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Abstract

The return on conventional momentum portfolios exhibits a predominantly negative, time-varying skewness,
which deepens during momentum “crashes”. This has important implications for the portfolio risk-return
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ditional skewness. We explore the economic underpinnings of time-varying skewness by timing the capital
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1 Introduction

One of the most studied capital markets phenomena is the relationship between the future return

on a given asset and its past relative performance, termed momentum effect. A simple portfolio

that buys the past “winners” and sells the past “losers” has historically delivered a competitive

risk-adjusted return in US equity markets and has become central to the market efficiency debate,

at least since Jegadeesh (1990).1 Despite a strong historical performance, a conventional momentum

portfolio is subject to rare yet predictable large drawdowns relative to the market, referred to as

momentum “crashes” (e.g., Daniel and Moskowitz, 2016).

A popular approach to mitigate the economic impact of these crashes builds upon the intuition

that the capital exposure to the momentum portfolio can be dynamically adjusted by timing the

risk associated with the strategy performance (e.g., Barroso and Santa-Clara, 2015). We build upon

this line of research and offer a novel perspective on the risk associated with momentum investing.

Our approach is based on the assumption that if the portfolio return displays time-varying skewness,

time-varying volatility alone may not provide a complete representation of the strategy risk. As a

result, a capital adjustment which explicitly ignores the skewness dynamics may be sub-optimal as

investors with asymmetric risk preferences may even accept a lower return if they can trade it off

against lesser downside risk.

The reason why skewness may play an important role in managing momentum risk is intuitive, al-

though often unappreciated: high volatility is not always associated with large negative returns, and

significant negative returns can occur in periods when volatility is subdued, and the risk is negatively

skewed. In fact, risk is not necessarily symmetric over time (e.g., Bollerslev et al., 2022). Perhaps

surprisingly, the explicit role of skewness has mostly been overlooked in managing momentum risk.

Before discussing our main findings, two comments are in order. First, it is essential to highlight
1Jegadeesh (1990) first document that stocks that performed well in the past tend to outperform the market. In

contrast, stocks that performed poorly tend to underperform. Grinblatt et al. (1995) find that momentum strategies
are common among investment funds, while several papers document the pervasiveness of this anomaly across countries
– including Rouwenhorst (1998); Fama and French (2012) – and asset classes (e.g., Moskowitz and Grinblatt, 1999;
Moskowitz et al., 2012; Asness et al., 2013).
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that our focus is not to modify the construction of a momentum strategy (e.g., Byun and Jeon,

2023) but rather to design a dynamic capital adjustment to equity momentum portfolios following

the blueprint of Daniel and Moskowitz (2016). Second, although our results support the view that

the skewness in momentum return can be partly rationalised based on asymmetric risk preferences,

our objective is not to provide a structural interpretation of the momentum premium but rather

to highlight the importance of conditional skewness to understand better the risk associated with

momentum investing.

1.1 Main findings

We estimate a time-varying parameter model that recovers the return distribution’s location, scale,

and asymmetry over time to tease out the dynamics of conditional skewness in momentum re-

turns. This allows us to explain skewness’s role in the momentum risk-return trade-off and derive

a skewness-hedging component within a conventional maximum Sharpe ratio strategy. Overall, our

paper’s contribution is threefold.

First, we uncover a significant, pro-cyclical time variation in the conditional skewness associ-

ated with the return on a conventional momentum portfolio á-la Jegadeesh and Titman (1993).

The return asymmetry tends to be negligible during economic expansions, while it becomes predom-

inantly negative towards the tail of recession periods. This pattern is exacerbated during momentum

crashes, whereby spikes in return volatility coincide with deepening downside risk. This suggests

that conditional skewness may be important for timing the return on a momentum factor.

Second, we explore the role of conditional skewness in the risk-return trade-off of a momentum

strategy. We highlight that any evidence of negative risk-return trade-off is entirely driven by crash

periods, and its dynamic is generally shaped by the strategy’s return skewness. This echoes the

intuition in Theodossiou and Savva (2016), which argues that in skewed returns, the risk premium

features a “pure risk” component and a “skewness risk” premium component. Hence, the former can

be interpreted as the prevailing risk-return trade-off absent any conditional skewness. Our results

suggest that since the direction of the skewness premium hinges on the sign of the skewness, the
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overall risk-return trade-off can range from positive to negative over time, depending on the strength

of the returns’ asymmetry. This evidence can help to rationalise the rather flat unconditional risk-

return trade-off previously reported in the literature (e.g., Barroso and Maio, 2023).

Our third result relates to the economic value of capturing time-varying skewness for managing

momentum risk. Consistent with the intuition of distinguishing between “pure risk” and “skew-

ness risk” in the presence of conditional skewness, we derive a dynamic skewness-hedging maximum

Sharpe ratio strategy expanding on Daniel and Moskowitz (2016). Specifically, during periods of

highly negative (positive) conditional skewness, our approach leads to a decrease (increase) of the

capital exposure to a momentum portfolio larger than what would be implied by volatility scaling

alone. We show empirically that our approach fares better than leading volatility-managed momen-

tum portfolios, especially regarding the exposure to downside risk. This suggests that, by accounting

for time-varying asymmetry, one can reduce the impact of low-probability large drawdowns on mo-

mentum profitability without giving up any significant risk-adjusted return.

The main empirical results hold for short-term and intermediate momentum portfolios when

considering transaction costs for different leverage constraints in a post-1950 out-of-sample period

and in the context of monthly capital adjustments. Notice that our framework is general and can

be applied to any other factor or anomaly-based portfolios. Our focus on momentum portfolios

is primarily led by the existing evidence that shows how volatility scaling is mainly beneficial for

momentum portfolios, while the evidence for other factors/anomalies is far less clear (e.g., Cederburg

et al., 2020; Barroso and Detzel, 2021).

Finally, it is worth mentioning that although providing a structural interpretation of the mo-

mentum premium is beyond the scope of the paper, we nevertheless attempt to highlight some

asset pricing implications that can be drawn from our results. Specifically, we build upon Grundy

and Martin (2001) and show that the estimated skewness of momentum return can only be partly

reconciled by a CAPM with asymmetric exposure to upside and downside market risk. The latter

can be framed as a reduced-form representation of an equilibrium asset pricing model in which a

representative agent is endowed with a disappointment-aversion utility function (e.g., Ang et al.,
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2006). This poses a challenge for asset pricing models that overlook higher-order moments’ role in

shaping momentum risk premiums.

1.2 Closely related literature

In addition to Barroso and Santa-Clara (2015) and Daniel and Moskowitz (2016), our work con-

tributes to a long-standing literature that seeks to understand the properties of momentum returns,

such as Jegadeesh (1990); Rouwenhorst (1998); Moskowitz and Grinblatt (1999); Griffin et al. (2003);

Moskowitz et al. (2012); Novy-Marx (2012); Asness et al. (2013); Kelly et al. (2021); Ehsani and

Linnainmaa (2022). Jacobs et al. (2015) uncover a robust relationship between expected skewness

and cross-sectional momentum. Yet Theodossiou and Savva (2016) highlight how the evidence on

the shape of the risk-return trade-off in momentum strategies has often been inconclusive. They

argue that such ambiguity stems from the fact that volatility and skewness have an offsetting impact

on the strategy’s expected return.

A second strand of literature we contribute to relates to the role of skewness as an input for

investment decisions (e.g., Patton, 2004; Guidolin and Timmermann, 2008; Bollerslev et al., 2022)

and asset pricing models (e.g., Harvey and Siddique, 2000; Dittmar, 2002). Building on Barroso and

Santa-Clara (2015); Cederburg et al. (2020), recent evidence from Wang and Yan (2021); Hanauer

and Windmüller (2023) suggests that by scaling factor portfolio return by downside volatility alone,

one can improve upon simple volatility scaling. Our results show that the time-varying interplay

between conditional expected return, volatility and skewness can offer novel insights into the dynamic

of momentum risk and, thus, significant economic gains compared to popular volatility-managed

momentum portfolios.

2 Skewness in US equity momentum

We follow Daniel and Moskowitz (2016) and form portfolios based on all-firm breakpoints; that is, an

equal number of firms is present in each decile portfolio, rather than an equal number of NYSE firms

as in Fama and French (1996). Stocks are sorted into deciles, ranked based on their performance
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over the past J months. A conventional momentum strategy involves investing 1$ in the portfolio

of past winners (the 10th decile) and selling 1$ of past losers (the 1st decile), with a one-month

holding period. We skip the most recent month as the formation period to avoid the short-term

reversal (e.g., Jegadeesh, 1990).

Figure 1 compares the cumulative performance of investing 1$ in the winners-minus-losers (WML)

portfolio with a look-back period of 12 months, i.e., the 12_2 momentum of Jegadeesh and Titman

(1993), against a buy-and-hold investment in the market portfolio and the risk-free rate. The market

portfolio is the value-weighted index of all the CRPS firms, and the risk-free rate is the 1-month T-bill

rate.2 The performance is calculated from the second half of the 1920s holding the investment until

the end of 2020. Momentum decile portfolios are rebalanced monthly, but returns are calculated

daily as in Daniel and Moskowitz (2016). Despite a strong performance, the 12_2 portfolio has

experienced a few severe drawdowns – e.g., -65% assuming a 1$ investment in the portfolio at the

beginning of 1932 and 2009 – followed by prolonged periods underperforming the market.3

Despite the risk-adjusted return remaining large and significant, these sporadic but large and

persistent losses, dubbed momentum “crashes”, induce significant asymmetry in the momentum

return’s distribution. Table 1 shows that the Sharpe ratio for the momentum strategy is 0.78

annualised, almost double that of the market portfolio.4 A higher risk-adjusted return is not due

to higher exposure to market risk, with the CAPM beta being slightly negative (β = −0.15, pval =

0.000). Yet, the return unconditional skewness, defined as the standardised third moment of the

sample distribution, is highly negative and significant as shown by the p-value obtained from the

Bai and Ng (2005) test.5

2The daily T-bill rate and the daily return on the market portfolio are obtained from Kenneth French data library:
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

3At a monthly frequency, momentum crashes entail losses ranging from -90% to -75% over the same period.
4For comparison with Daniel and Moskowitz (2016), we do not consider transaction costs in calculating the perfor-

mance of the 12_2 portfolio. When adding reasonable transaction costs, the performance of the standard momentum
strategy deteriorates (e.g., Novy-Marx and Velikov, 2016; Patton and Weller, 2020; Barroso and Detzel, 2021).

5Under the null hypothesis of no return asymmetry, the Bai and Ng (2005) test statistic is π̂3 =
√
Tµ̂3

s(µ̂3)

d−→ N(0, 1)

with µ̂3 a sample estimate of the third central moment of the return distribution and s (µ̂3) =
(
α̂2Γ̂22α̂

′
2

) 1
2 . Here,

α̂2 =
[
1, −3σ̂2

]
is a function of the sample variance estimate σ̂2 and Γ̂22 a consistent estimate of the 2 × 2 (lower-

right) sub-matrix of Γ = lim
T→∞

TE
[
ZZ

′
]

with Z the sample mean of the deviation of the empirical centred first three
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Figure 1: US equity momentum over the last century
The plot reports the cumulative performance of a 12_2 momentum strategy, the market and a 1-month T-bill rate.
The cumulative performance is reported on a logarithmic scale. The right panels zoom in on 1932-1934, 2001-2006 and
2009-2011 momentum crashes by re-scaling the initial investment to 1$ at the beginning of the period. Grey-shaded
bands highlight NBER recessions. Red shaded bands indicate momentum crash periods, as indicated in Daniel and
Moskowitz (2016).

The presence of asymmetry in the return’s distribution is confirmed when discounting the effect

of outliers by using the Bowley (1926) measure, defined as QSα = q(α)+q(1−α)−2q(50)
q(α)−q(1−α) , where q(α) is

the αth quantile and q(50) the median. The QS99 points towards a marked negative asymmetry of

-0.108, twice as large as the market portfolio. This indicates that the left tail of the distribution

accounts for 55% of the total dispersion of the return, whereas the right tail accounts for 45%; that

is, the downside risk is approximately 20% larger than the upside risk over the entire sample.

Table 1 also reports the descriptive statistics for the return on two alternative cross-sectional

momentum strategies proposed in the literature, meaning the short-term momentum (6_2), formed

based on a six-month look-back period (e.g., Jegadeesh and Titman, 1993), and the intermediate

momentum (12_7), formed based on past returns from months t − 12 through t − 7 as proposed

by Novy-Marx (2012). When examining the return asymmetry from these alternative momentum

moments from their theoretical (Gaussian) counterparts.
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Table 1: A snapshot of the skewness in US equity momentum

This table reports different descriptive statistics (Panel A) and measures of skewness (Panel B) for past winners,
losers, and WML portfolios for three alternative specifications as in Jegadeesh and Titman (1993) and Novy-Marx
(2012). In addition, we report the sample skewness, with p-values for the Bai and Ng (2005) test in parentheses, and
the quantile skewness (QSα), computed as q(α)+q(1−α)−2q(50)

q(α)−q(1−α)
, with α = 99. The full sample period is from January

1st 1927, to December 31st, 2020, daily.

Panel A: Sample descriptive statistics

12-2 6-2 12-7 MKT

losers winners WML losers winners WML losers winners WML

r − rf (%) −3.500 15.415 18.915 −0.130 12.928 13.059 −0.075 15.126 15.201 7.786
σ (%) 28.570 23.626 24.104 27.975 23.135 22.942 25.650 23.539 19.913 18.643
SR −0.123 0.652 0.785 −0.005 0.559 0.569 −0.003 0.643 0.763 0.418
α (%) −12.640 6.803 22.242 −9.657 4.208 15.341 −9.083 6.326 16.941

β 1.317 1.162 −0.155 1.313 1.153 −0.159 1.242 1.183 −0.060

Panel B: Skewness measures

Skewness

Full sample 0.147 -0.680 -1.230 0.234 -0.714 -1.548 -0.051 -0.744 -0.760 -0.476
(0.264) (0.022) (0.001) (0.184) (0.018) (0.001) (0.102) (0.028) (0.021) (0.059)

1932-1937 0.644 0.050 -0.215 1.254 -0.395 -1.747 0.233 -0.181 -0.161 0.356
2000-2005 -0.064 -0.185 -0.403 -0.017 -0.284 -1.371 -0.349 -0.371 -0.533 -0.276
2008-2012 0.001 -0.321 -1.742 0.103 -0.285 -0.796 0.289 0.075 -0.378 0.064

QS99

Full sample 0.021 -0.108 -0.108 0.002 -0.091 -0.096 -0.024 -0.079 -0.089 -0.045
1932-1937 0.117 -0.090 -0.227 0.109 -0.095 -0.239 0.016 -0.009 -0.110 0.057
2000-2005 -0.011 0.031 -0.094 0.016 -0.017 -0.117 -0.030 -0.010 -0.091 -0.100
2008-2012 0.006 -0.114 -0.204 -0.027 -0.090 -0.176 -0.081 -0.031 -0.141 0.084

portfolios, we find evidence that all three long-short strategies present roughly the same skewness

profile. The return on the 12_7 strategy have a sample skewness of −0.768 (pval = 0.021), which

is lower than both the 12_2 strategy (skew = −1.236, pval = 0.001) and 6_2 (skew = −1.554,

pval = 0.001). The QS99 measure is approximately the same across portfolios, i.e., -0.11 for 12_2,

-0.096 for 6_2, and -0.089 for 12_7.

Table 1 also highlights a negative correlation between CAPM alphas and the return skewness.

For instance, past winners and the WML strategy all show significant, negative (positive) skewness

(alphas), with the long-short portfolios displaying, on average, twice the asymmetry and CAPM
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alphas compared to past winners. Instead, past losers show a highly negative alpha and a very

small, positive skewness. This holds across different momentum portfolios and confirms that the

strategy’s profitability comes at the cost of substantial downside risk.

A preliminary gauge of the time variation in the asymmetry of the momentum return distribution

can be obtained by investigating the realised skewness pattern over different return windows. Panel

B of Table 1 reports various skewness measures calculated over five years centred around the three

crash periods as indicated by Daniel and Moskowitz (2016). The estimates suggest substantial

differences in return asymmetry over different periods. For instance, the 1932 and 2009 crashes

exhibit a quantile skewness QS99 that is twice as large as the overall sample’s. This holds across

different momentum portfolios.

Figure 2: Recursive skewness test

The three panels report the time series of the Bai and Ng (2005) test statistics for asymmetry, π̂3 =
√

Tµ̂3
s(µ̂3)

, over
different rolling window of return. We report the testing results by using two and five years of daily return on the WML
strategy for the 12_2, 12_7 and the 6_2 momentum. The dashed horizontal lines represent the one-sided test’s 90%
and 95% critical values. Grey-shaded areas identify NBER recessions, while red-shaded areas highlight momentum
crash periods, as indicated in Daniel and Moskowitz (2016). The sample period is daily from January 1st 1927 to
December 31st 2020.

(a) 12_2 momentum (b) 12_7 momentum (c) 6_2 momentum

Figure 2 expands on the sub-sample estimates from Table 1 and reports the results of the Bai

and Ng (2005) test statistics for asymmetry calculated over different rolling windows of two and

five years of daily return. The test statistics consistently show negative values of the standardised

third moment of the distribution across alternative momentum portfolios. Yet, they also exhibit a

substantial time variation, ranging from near zero to highly negative values. The dashed horizontal
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lines represent the 90% and 95% critical values associated with the null hypothesis of no asymmetry

against the alternative of negative asymmetry.

The null hypothesis of no asymmetry is often rejected over the sample; there are multiple pe-

riods in which the momentum return shows negative and significant skewness. For instance, the

asymmetry of the 12_2 portfolio return is negative and significant throughout the momentum crash

of the 1930s, while it becomes non-significant again over the following decade. The rolling window

estimates also highlight a substantial co-movement of the Bai and Ng (2005) test statistics across

different momentum portfolios. Specifically, the correlation of the test statistics between the 12_2

and the 12_7 (6_2) momentum portfolios is 0.72 (0.65) over the entire sample.

To complement the simple recursive Bai and Ng (2005) test in Figure 2, in Appendix A we

report the results of a more formal likelihood-based test whereby we examine whether the condi-

tional skewness of the 12_2 portfolio return remains constant against the alternative of time-varying

skewness.6 The null hypothesis of constant skewness is firmly rejected, with p-values well below

the canonical 1% threshold. In the next section, we take stock of this preliminary evidence and

introduce a novel modelling framework which allows us to explicitly track the time-varying nature

of the return asymmetry of momentum portfolio return.

3 Modelling time-varying skewness

We model the conditional distribution of a portfolio return rt as a Skew-t distribution with ν > 3

degrees of freedom and time-varying location mt, scale σt, and shape ρt parameters (e.g., Arellano-

Valle et al., 2005; Gómez et al., 2007),

rt = mt + σtεt, εt ∼ Sktν(0, 1, ρt), t = 1, . . . , T (1)

The shape parameter ρt ∈ (−1, 1) captures the extent of asymmetry of the portfolio return. Positive

(negative) values of ρt imply a positively (negatively) skewed return at time t, and the ratio 1+ρt
1−ρt

6In practice, we test the information contained in the score of the log-likelihood function estimated under the null
hypothesis of no time-variation. See Appendix A for more details.
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defines the probability mass on the right versus on the left of the location mt.

Equation (1) nests standard distributional assumptions as limiting cases. For instance, by re-

stricting ρt = 0 we obtain the symmetric Student-t distribution. With ν → ∞ and ρt = 0, the

conditional distribution coincides with a Normal with time-varying mean and variance. Finally,

with ν → ∞ and ρt ̸= 0 we retrieve the Skew-Normal distribution of Mudholkar and Hutson (2000).

As all these parameters are estimated from the data, our model does not impose but allows for

time-varying skewness in the return’s conditional distribution.

We follow Creal et al. (2013) and Harvey (2013) and assume the dynamics of mt, σt and ρt

is entirely observation-driven in the sense of Cox (1981), meaning that the time variation of the

parameters is a direct function of past prediction errors. In order to ensure that the scale σt is

positive and the shape ρt ∈ (−1, 1), we adopt the transformations γt = log (σt) and δt = arctanh (ρt).

The vector of time-varying parameters ft = (mt, γt, δt)′ is updated at each time t based on the law

of motion,

ft+1 = ft +Ast, t = 1, . . . , T (2)

where A contains the structural parameters regulating the sensitivity of ft to the information con-

tained in the scaled score st = St∇t. Here St is a scaling matrix proportional to the diagonal of the

information matrix It = E [∇t∇′
t], such that St = (J ′

tdiag(It)Jt)−1, and ∇t = J ′
t

[
∂ℓt
∂mt ,

∂ℓt
∂σ2

t
, ∂ℓt

∂ρt

]′
the gradient of the log-likelihood function for the time-varying parameters. The Jacobian matrix Jt

maps the transformations γt and δt into the original time-varying scale σt and shape ρt parameters.

The scaled score translates the information summarized by the prediction errors at time t into

an update of ft. Specifically, given Eq. (1) and the conditional log-likelihood (see Eq. (B7) in

Appendix B.4), the elements of st are defined as:

sm,t = χ(1 + ρ2t )wtεt, sγ,t = χ(ν + 1)(wtε
2
t − σ2

t ), sδ,t = χsign(εt)(1− s(εt)ρt)wt
ε2t
3σ2

t

, (3)
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where sign(·) is the sign function, χ = (ν+3)
(ν+1) and wt = (ν + 1)−1

(
ν (1 + s (εt) ρt)2 + ζ2t

)
represents

the weights to the standardised prediction errors ζt=
εt
σt

. A full derivation of the information matrix

It, the Jacobian Jt and the elements of the scaled score vector st is provided in Appendix B.1

and Appendix B.2. We assume that the matrix A in Eq. (2) is diagonal so that the update of each

time-varying parameter is proportional to the information conveyed by the likelihood of that specific

parameter.

The scalar wt in Eq. (3) plays a key role as it represents the implicit weight of the information

contained in the prediction error (e.g., Harvey and Luati, 2014). More generally, Blasques et al.

(2015) show that score-driven updates as in Eq. (3) can reduce the local Kullback-Leibler divergence

between the actual, unobserved, conditional density and the corresponding estimate, even when the

underlying model is potentially mis-specified.7

Maximum likelihood estimates (MLE) of ft and θ = (ν,A) can be obtained via a prediction

error decomposition (see Blasques et al., 2022). However, given the random-walk specification of

ft, maximum likelihood tends to put a large point mass at the initial condition, an issue known as

the “pile-up problem” (e.g., Sargan and Bhargava, 1983; Stock and Watson, 1998). To address this

issue, we discipline the parameter space by introducing a minimal set of prior conditions on A and

ν, such that any evidence of time variation in ft must reflect strong evidence in the data. As a

result, the resulting estimator produces a maximum a posteriori estimate (see, e.g., Kamen and Su,

2012). Appendix B.4 provides a detailed description of the estimation procedure.

3.1 Expected return and parameters updating

The conditional moments of the return distribution implied by Eq. (1) can be derived as a weighted

average of the conditional moments of a Half-t distribution (Arellano-Valle et al., 2005; Gómez et al.,
7Related to that, Koopman et al. (2016) show that score-driven time-varying parameter models produce similar

forecasting precision to parameter-driven state–space models, even if the latter constitute the actual data generating
process. In this respect, score-driven updates of the time-varying parameters are optimal from an information theoretic
perspective.
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2007). As a result, the expected return Et(rt+1) can defined as:

Et(rt+1) = mt + g(ν)ρtσt, ν > 3 with g(ν) =
4νC(ν)
ν − 1

(4)

where ν denotes the degrees of freedom parameter, C =
Γ( ν+1

2 )
√
νπΓ( ν

2 )
and Γ(.) is the Gamma function.

Eq. (4) implies that momentum expected return depend on the scale σt and the asymmetry ρt at

each time t. The location parameter mt captures the mode of the conditional distribution and is

equivalent to Et(rt+1) under symmetric distributional assumptions – when ρt = 0. A full derivation

of the expected return in Eq. (4) is provided in Appendix C.

To better understand the role of conditional skewness in our model, Figure 3 shows some com-

parative statics on the impact of σt and ρt on Et(rt+1). Two properties emerge: first, the effect

of σt on the expected return is amplified by ρt. For instance, for a negatively skewed return, i.e.,

ρt < 0, the higher the volatility, the lower the expected return (dark blue area). This observation

provides an intuitive narrative for the risk associated with momentum investing. The combination

of volatility spikes and negative skewness, characterising momentum crashes, can swiftly reverse the

strategy’s expected return.

The second property that emerges from Figure 3 is that the effect of asymmetry and volatility

on the expected return is multiplicative. This means that the curvature of Et(rt+1) as a function

of σt increases more than linearly as |ρt| increases. The steepness of the curvature is regulated by

the degrees of freedom ν (see partial derivative plots). Thicker tails push the portfolio’s expected

return to more extreme values depending on the conditional asymmetry. It is ρt that dictates the

sign of the sensitivity of expected return to a change in volatility.

As the time variation of ft depends on past prediction errors, it is worth discussing how the

scale σt and asymmetry ρt update over time and the effect of these updates on the dynamic of the

expected return. Figure 4 displays how new information – measured by the standardised prediction

error – translates into changes in the scale and shape parameters. The extent of parameters updating

at a given time t depends on the underlying return asymmetry. For instance, when the conditional
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Figure 3: Model-implied expected value surface

The left panel illustrates the expected value surface for values of ρt and σt. The smaller panels on the right illustrate
the partial derivative of Eq. (4) with respect to ρt and σ. Without loss of generality, we report the surface by restricting
the location parameter mt to zero.
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distribution exhibits positive skewness (e.g., ρt = 0.5, dashed green line), observing a negative

prediction error leads to significant adjustments in scale and asymmetry. These adjustments are

less pronounced when the return skewness is mildly negative (e.g., ρt = −0.25, dashed blue line). In

the latter case, a negative prediction error is more likely than when the conditional distribution is

positively skewed. This determines how σt and ρt update upon observing the return at time t.

A significant rebound in the strategy’s return prompts the model to promptly revise the expected

value of future returns due to reassessing the underlying risk profile. This effect becomes more

prominent as the strategy return becomes more extreme.8 As a result, the expected return is

responsive to changes in the overall risk profile of the strategy. A reassessment of the risk balance,

captured by the asymmetry parameter, especially during periods of high volatility, leads to a quick

adaptation of Et(rt+1) to shifts in the portfolio risk. In the next section, we leverage these model
8Except when a return is categorized as a tail event by the model, in which case their informational value is heavily

discounted (see Figure B1(a) in Appendix B.3).
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Figure 4: Updating of the scale and asymmetry parameters

The panels report the news impact curves (NICs) for the scale and shape parameters as functions of the standardised
prediction error, ζt. We consider values of ϱ = −0.5, 1,−0.25. ν is fixed at 5.

(a) Scale updating (b) Asymmetry updating

features to investigate the role of conditional volatility and skewness in the strategy’s risk-return

trade-off over time.

4 Time-varying skewness and momentum risk

The descriptive statistics in Table 1 suggest that the 12_2 portfolio provides the largest risk-adjusted

performance while at the same time reports an equally large negative skewness – even larger –

compared to the 12_7 and 6_2 momentum portfolios. In addition, there is a substantial co-movement

in the dynamics of skewness across momentum portfolios (see Figure 2). For this reason, we follow

Barroso and Santa-Clara (2015); Daniel and Moskowitz (2016); Hanauer and Windmüller (2023)

and focus on the 12_2 momentum return. The analysis for the 12_7 and 6_2 portfolios, and the

12_2 long-short strategy based on NYSE breakpoints are discussed in Section 5.1 and Appendix E.

Figure 5 presents the estimates for the 12_2 return conditional volatility
√
Vt(rt+1) and skew-

ness Skt(rt+1), respectively. The conditional variance of the return can be derived analytically as

Vt(rt+1) = σ2
t (

ν
ν−2 + h(ν)ρ2t ), for ν > 3, where h(ν) = 3

ν−2 − g(ν)2 ≫ 0 gauges the interaction
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between the fat-tailedness of the distribution and the asymmetry parameter.9 For ρt = 0, the con-

ditional variance Vt(rt+1) reduces to the Student-t variance. The full derivation of Vt(rt+1) and

Skt(rt+1) is provided in Appendix C. We report the daily estimates in black and their two-year

average in green to increase readability. The red line represents the sample mean estimate.

Figure 5: Conditional volatility and skewness in momentum return
The plot reports the time-varying volatility (left) and skewness (right) estimates for the 12_2 WML portfolio return.
The red dashed lines represent the sample mean, whereas the green lines highlight the 2-year moving averages of
the daily estimates. Grey-shaded areas identify NBER recessions, while red-shaded areas highlight momentum crash
periods, as indicated by Daniel and Moskowitz (2016). The sample period is from January 1st 1927 to December 31st,
2020.

(a) Conditional volatility (b) Conditional skewness

The conditional volatility of the momentum return is substantially higher than its sample av-

erage during the decade following the Great Depression, the burst of the dot-com bubble, and the

period following the great financial crisis of 2008/2009. Perhaps surprisingly, the return conditional

volatility remained subdued and relatively stable for almost sixty years, from 1940 to the late ’90s,

except for a few episodes of short-lived spikes during the ’70s and ’80s, two decades characterised

by a series of economic shocks and subsequent recessions.

Figure 5(b) points towards a pro-cyclical time variation in the asymmetry of the strategy return.

Specifically, the conditional skewness tends to zero during economic expansions, while it becomes
9The formulation for Skt(rt+1) is slightly more tedious, and maps directly the asymmetry parameter ρt ∈ (−1, 1)

into the unbounded value of the conditional skewness.
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more negative during recessions. This pattern is exacerbated during momentum crashes, whereby

the return conditional distribution features both an increasing dispersion and a deepening negative

skewness akin to a time-varying leverage effect. For instance, the return skewness was largely

negative during the crash of 1932- 1939 and significantly dropped from -0.1 to -0.4 towards the end

of the great financial crisis. These periods coincide with major peaks in return volatility.

Although with some peculiarities, a similar combination of higher volatility and more negative

skewness occurred during the 2001-2002 crash – with skewness collapsing from 0.2 to -0.3 and

volatility peaking at 7% daily in annualised terms – and the great financial crisis. Interestingly, the

conditional skewness (volatility) remains persistently lower (higher) than its sample mean towards

the end of 2020. This coincides with the onset of the COVID-19 pandemic, which may represent

the latest episode of a long-lasting flattening in momentum profitability since the early 2000s, as

highlighted in Figure 1. Appendix E.1 shows that the estimates of conditional volatility and skewness

for the 12_7 and 6_2 momentum portfolios largely align with Figure 5.

4.1 Time-varying skewness and the risk-return trade-off

Figure 5(a) confirms that the strategy’s return displays time-varying volatility, a result well-documented

in the literature (Barroso and Santa-Clara, 2015; Daniel and Moskowitz, 2016). In addition, our

findings suggest that the momentum return is also persistently negatively skewed, with skewness

deepening at times as shown in Figure 5(b). In particular, momentum crashes are characterized

by increases in volatility with deepening negative skewness of the conditional returns. This is the

first indication that conditional volatility alone may not suffice to capture the full extent of momen-

tum risk. But why does skewness matter? We argue that the strength of return asymmetry has

important implications for the time variation of the strategy risk-return trade-off. The relationship

between volatility and expected returns should be red in conjunction with conditional skewness.

We first highlight the role of conditional skewness on the momentum risk-return trade-off by

plotting the correlation between the estimated expected return Et(rt+1) and volatility
√
Vt(rt+1)

over the entire sample. Figure 6(a) supports the evidence shown by Charoenrook and Conrad
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(2005); Barroso and Maio (2023) of a mildly negative, if not insignificant, relationship between the

momentum expected return and volatility. Yet, such a negative correlation deepens and becomes

highly significant during momentum crashes, as highlighted by the red markers in the scatter plot.10

Figure 6(b) suggests that one can better understand the sign of the risk-return trade-off by dis-

tinguishing between periods with positively and negatively skewed returns. With a positively skewed

return distribution, one notes a positive risk-return relationship on average, whereas the opposite

arises when the strategy displays negatively skewed returns. Therefore, the often inconclusive ev-

idence on the sign of the unconditional risk-return trade-off may be due to an offsetting impact of

conditional volatility and skewness on expected returns.

To interpret these findings, we rearrange Eq. (4) and write the expected return as

Et(rt+1) = mt + λt

√
Vt(rt+1) with λt =

g(ν)√
ν

ν−2 + h(ν)ρ2t

ρt (5)

where the slope λt is a non-linear function of the time-varying asymmetry ρt. Equation (5) echoes

the intuition provided by Theodossiou and Savva (2016) whereby in the presence of skewed returns,

the mean excess return features a “pure risk” component, which captures the prevailing premium

absent any conditional return skewness, and a “skewness risk” component, which aligns with the

sign of skewness.

The first component, mt, in Eq. (5) represents the modal return which should be, theoretically,

positively related to risk. The second component takes the value of zero in the absence of skewness

and directly maps time-varying asymmetry to the expected returns, and thus can be interpreted as

”skewness risk” premium in the jargon of Theodossiou and Savva (2016). Therefore, the direction

of the “skewness risk” premium hinges on the sign skewness. As a result, the overall risk-return

trade-off can range from positive to zero or negative, depending on the relative strength of the “pure

risk” vs“skewness risk”, and the sign of the latter.
10The regression slopes for the points in Figure 6(b) are -0.05, -0.01, -0.32 for the full sample, the non-crash sample

(black) and the crash sample (red), respectively. All coefficients are significant at the 1% level.
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Figure 6: The dynamic of the risk-return trade-off
Panel (a) reports the correlation between the estimated expected return Et(rt+1) and volatility

√
Vt(rt+1) over the

entire sample. We highlight different slopes during momentum crashes (red) and non-crash periods (black). Panel (b)
illustrates the risk-return trade-off as a function of the time-varying asymmetry, whereby we colour-code periods with
positive vs negative skewness. Panel (c) reports the correlation between the “pure risk” premium component mt and
conditional volatility. Panel (d) shows the change in the price of skewness risk as a function of positive and negative
return skewness. The sample is from January 1st 1927 to December 31st 2020.

(a) Risk-return trade-off (b) Pos. vs. Neg. skewness

(c) “Pure risk” premium (d) “Skewness risk” premium

The lower panels of Figure 6 depict a breakdown of the momentum risk-return trade-off into

these two components. Consistent with economic theory, Figure 6(c) shows a positive slope in the

relationship between the return mode mt and conditional volatility
√

Vt(rt+1). Differently, Figure

6(d) shows that the strategy’s “skewness risk” component varies in sign due to changes in skewness

over time. On average, the “skewness risk” premium is less pronounced when skewness is positive

but stronger when skewness is negative. The two components have a partially offsetting effect on
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the expected return when the realised return is negatively skewed, while they reinforce each other

for positively skewed returns. As a result, shifts in risk have a more pronounced, negative effect on

the expected return when the return asymmetry becomes more negative.

Figure 6 suggests that, in the presence of return asymmetry, the dynamic of the risk-return trade-

off does not depend only on conditional volatility. Figure 7(a) formalises this argument by showing

the theoretical shape of λt as a function of ρt (dashed curve), its estimated value over time (blue

marks), and its unconditional mean (red circle). The sensitivity of expected returns to “skewness

risk” exhibits a more pronounced negative relationship when conditional skewness is negative.

Figure 7: The role of time-varying skewness
Panel (a) reports the theoretical shape of λt, as a function of ρt. The blue marks represent the realized values, and
the red circle highlights the mean. In panel (b), we report the time series of λt. The blue line represents the daily
estimates, the light-blue line a two-year moving average, and the horizontal dashed line the value of λt evaluated at
the sample mean ρ. The sample is from January 1st 1927 to December 31st 2020.

(a) λt as a function of ρt (b) λt dynamics

Figure 7(b) shows that the sign of the risk-return trade-off in momentum investing is generally

negative, although it varies considerably over time. Consequently, most of the variation in Et(rt+1)

can be attributed to time-varying risk, provided that the role of risk asymmetry is appropriately

accounted for through λt. Overall, accounting for time-varying skewness helps to rationalize (a)

the unconditional flat relationship between risk and return in momentum, and (b) the pronounced

20



negative relationship between expected return and volatility during crash episodes. Indeed, the

latter are characterized not only by large volatility but also by a more negatively skewed conditional

distribution of returns (see Figure 5).

The results in Figures 6-7 help to draw some useful comparisons with Daniel and Moskowitz

(2016). They regress the WML return onto the interaction between a bear market indicator and the

market variance as a proxy for Et(rt+1), which implies lower expected return during bear markets.

Our model rationalises their findings as a reflection of the role of varying downside risk in the mo-

mentum strategy: when volatility is moderate and conditional skewness is negligible, the variation

in Et(rt+1) is small and mostly captured by the “pure risk” component mt. Instead, when condi-

tional volatility spikes in the lead-up to crash periods, the expected return is depressed due to the

interaction with an increasingly negative conditional skewness.

4.2 Sharpe ratio and time-varying skewness

We leverage the definition of expected return in Eq. (5) and investigate further the value of mod-

elling time-varying skewness to understand the dynamic of the momentum risk-adjusted return.

Specifically, we decompose the conditional Sharpe ratio, SRt =
Et(rt+1)√
Vt(rt+1)

as

SRt =
mt√

Vt(rt+1)
+ λt (6)

such that the time variation of the risk-adjusted return is a function of both conditional volatility

and skewness. The first component mt√
Vt(rt+1)

measures the contribution of conditional volatility

to the overall strategy risk-adjusted return and is related to the “pure risk” premium component

postulated by Theodossiou and Savva (2016) and outlined in Section 4.1. The second component

measures the direct role of skewness in the momentum risk-adjusted return based on λt (see Eq. (5)).

Figure 8(a) illustrates the dynamics of
√
Vt(rt+1), SRt and its two components over the 1932

momentum crash period. As volatility spikes during the great depression, the economic relevance of
mt√

Vt(rt+1)
vanishes, so that SRt is primarily due to the sensitivity of the “skewness risk” premium
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Figure 8: Sharpe ratio decomposition during crashes
The plots report in the top panels the conditional Sharpe ratio (black, annualised) against the conditional volatility
of the 12_2 momentum return. The bottom panels highlight the decomposition of the conditional Sharpe ratio into a
location component (mt/

√
V ar, blue) and λt in purple. The three plots correspond to the 1932, 2001 and 2009 crashes.

Grey-shaded bands highlight the NBER recession. Red shaded bands indicate momentum crash periods, as indicated
in Daniel and Moskowitz (2016).

(a) 1932 Crash (b) 2001 Crash (c) 2009 Crash

component to a shift in volatility, as captured by λt. This leads to an overall negative conditional

risk-adjusted return as the negative skewness deepens towards the tail of the great depression. Figure

8(c) shows a similar dynamic during the great financial crisis; that is, as volatility increases, the SRt

becomes negative and primarily driven by conditional skewness. Instead, Figure 8(b) shows that

return skewness does not play any role in SRt during the burst of the dot-com bubble. As volatility

trends downward in 2001, the risk-adjusted return becomes positive, with return asymmetry playing

a negligible role until 2003, when conditional skewness becomes negative (see Figure 5).

Overall, Figure 8 confirms the intuition that the risk-adjusted return associated with a momentum

strategy is not only related to time-varying volatility but is also tightly connected to the dynamic

of conditional skewness. When volatility increases and the return distribution shape becomes more

tilted towards negative values, the leverage effect leads to an even larger negative conditional Sharpe

ratio than that exerted by conditional volatility alone.
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5 A skewness-adjusted maximum Sharpe ratio strategy

In this section, we assess the economic significance of modelling time-varying skewness. To this end,

we build upon an established literature aiming to improve the profitability of a momentum portfolio

by timing the risk associated with the strategy performance (e.g., Barroso and Santa-Clara, 2015

and Hanauer and Windmüller, 2023). Within this setting, during periods of higher (lower) volatility

– relative to its sample average – the capital exposure to the WML portfolio is reduced (increased) by

an amount proportional to the inverse of the previous month’s variance. Expanding on this idea,

Daniel and Moskowitz (2016) propose a simple dynamic leverage adjustment that maximizes the

conditional Sharpe ratio as follows,

ωt =
1

2γ

Et(rt+1)

Vt(rt+1)
(7)

where Et(rt+1) and Vt(rt+1) represent some appropriately chosen estimates of the conditional mean

and variance of momentum return, and γ is a constant calibrated to match the unconditional volatil-

ity of the original momentum return. Eq. (7) illustrates that the capital adjustment ωt is well de-

scribed by its dependence on the first two conditional moments of the strategy return (see Appendix

C in Daniel and Moskowitz, 2016). Our model directly takes into account the role of the return

asymmetry on ωt in both moments. As a result, the investment rule in Eq. (7) can be separated

into two components,

ωt =
1

2γ

Et(rt+1)

Vt(rt+1)
=

1

2γ

mt + g(ν)ρtσt
Vt(rt+1)

=
1

2γ

mt
Vt(rt+1)︸ ︷︷ ︸
ω1,t

+
1

2γ

g(ν)σtρt
Vt(rt+1)︸ ︷︷ ︸
ω2,t

. (8)

The second component, ω2,t, captures the effect of time-varying asymmetry conditional on the scale

parameter σt. When the conditional distribution of the return is approximately symmetric, i.e.,

ρt ≈ 0, ω2,t is economically negligible.11 Thus, we interpret ω2,t as a skewness hedging adjustment
11With ρt = 0, we have mt = Et(rt+1) so that ω1,t would be akin to the adjustment of Daniel and Moskowitz (2016).

Note that while ρt may have a sizable effect on Et(rt+1) it has much lower impact on Vt(rt+1) since ρt ∈ (−1, 1) and
enters squared in the formula for Vt(rt+1) (see Section 4).
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to the original maximum conditional Sharpe ratio strategy of Daniel and Moskowitz (2016). During

periods of highly negative (positive) skewness, our dynamic leverage adjustment decreases (increases)

the exposure to the WML portfolio more than what would be implied by ignoring return asymmetry.

For this reason, we label our approach as a maximum “skewness-adjusted” SR (mSSR) strategy.12

We pit our approach against existing time-series adjustments explored in the literature. First,

we consider the constant volatility approach of Barroso and Santa-Clara (2015) (BS2015 henceforth)

whereby the exposure to a momentum strategy is re-scaled based on the six-months realised volatility

rv126t calculated on a rolling-window of daily momentum return. Next, we consider the maximum SR

strategy of Daniel and Moskowitz (2016) (DM2016 henceforth) where Et(rt+1) is the fitted value of a

regression of the WML return on the interaction between a bear market indicator and the six-months

market realised variance, and Vt(rt+1) is the fitted value of a regression of the 22-days WML realised

volatility onto rv126t and a daily asymmetric GARCH estimate. Finally, we consider a semi-volatility

targeting as in Wang and Yan (2021); Hanauer and Windmüller (2023) (cdVol henceforth).

Each method is tested using a broad range of performance measures. The traditional Sharpe

ratio (SR) gives equal weight to the variability of returns above and below the mean and, as such,

gives a misleading picture of the underlying risk when a strategy is poised by a marked asymmetry.

A simple alternative, the Sortino ratio (Sortino and Van Der Meer, 1991), scales returns by the

downside volatility (dVol, i.e. volatility of excess return conditional on being negative). Aside from

that, we also calculate a series of performance metrics specifically designed to capture the extent of

downside risk across strategies, such as the Stable Tail Adjusted Return Ratio (STARR) – which

replaces volatility with the Expected Shortfall (ES) as the denominator in the Sharpe ratio – and

the Rachev Ratio (RR) – which represents the ratio between the Expected Longrise (EL) and the

ES (e.g., Fabozzi et al., 2005).13 Lastly, we include the maximum return drawdown (MaxDD), the

Value-at-Risk (VaR), and the sample skewness as crude proxies for downside risk.
12Kandel and Stambaugh (1996) show that if we assume that only the first two conditional moments matter for

portfolio choice, the optimal investment rule under a more general power utility investor would be ωt =
1
γ

Et(rt+1)

Vt(rt+1)
+ 1

2γ

which is proportional to Eq. (7).
13The Rachev ratio captures the asymmetry of the return distribution by assessing the imbalance between extreme

losses and gains.
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We develop a novel bootstrap procedure to test the performance differential across methods.

Specifically, we extend the framework developed by Ledoit and Wolf (2008) to the broad set of

downside risk-specific measures outlined above in the presence of both time-series dependence and

fat tails. Appendix D contains the complete description of our block-bootstrap method and the

simulation results for the optimal choice of the block size.

Before discussing the results, one comment is in order. An alternative approach to gauge the

economic performance of time-varying skewness would include higher-order moments in the investors’

utility function (e.g., Mencía and Sentana, 2009). While this certainly represents an interesting

approach, it prevents a direct comparison with existing volatility targeting methods. Instead, our

implementation provides a cleaner setting to gauge the economic value of modelling time-varying

return asymmetry while benefiting from the simplicity of the maximum conditional Sharpe ratio

adjustment proposed by Daniel and Moskowitz (2016).

Baseline results. We estimate the parameters of the score-driven model, i.e. the degrees of

freedom ν and the matrix A in Eq. (2), at the end of every month.14 Holding those estimates fixed,

we update the time-varying parameters mt, σt and ρt – used to calculate Et(rt+1) and Vt(rt+1) in

Eq. (7) – on a daily basis for the following month. Therefore, our portfolio strategy avoids look-ahead

bias and is fully implementable in real-time. We use three years of daily return as an initial burn-in

sample for the recursive estimates and generate the initial portfolio choice on January 1st, 1930. In

Section 5.1, we also consider different subsamples with the initial portfolio choice on January 1st,

1950, or January 1st, 1970.

Table 2 reports the results. A p-value below the conventional 5% threshold indicates that the

performance differential of a given method compared to mSSR is statistically different from zero.

The Sharpe ratio of mSSR is 1.57 annually. This is about twice as large as the original momentum

portfolio (0.737, pval = 0.000). Not surprisingly, the DM2016 and BS2015 strategies do improve

in risk-adjusted terms vis-á-vis the WML portfolio, with an SR of 1.37 and 1.26, respectively. Yet,
14The random walk dynamics of the parameters ft imply that these are quite stable and, therefore, re-estimating

the model daily would have a limited impact on the results.
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Table 2: Managed momentum portfolios

Panel A reports a series of performance measures on the daily returns on our skewness-adjusted maximum conditional
Sharpe ratio strategy (mSSR) against a variety of alternative managed-momentum portfolios. We consider Daniel and
Moskowitz (2016) (DM2016) and Barroso and Santa-Clara (2015) (BS2015) which are based on recursive estimates of
the realised variance, as well as a semi-volatility targeting as proposed by Wang and Yan (2021) and Hanauer and
Windmüller (2023). Specifically, the performance measures in each of the columns are, in order, the Sharpe ratio, the
Sortino ratio, the Stable Tail Adjusted Return ratio (STARR), the Rachev ratio (RR), the Value-at-Risk (VaR), the
Expected Shortfall (ES), the volatility of excess return conditional on being negative (dVol), the sample skewness of
excess returns, and the maximum drawdown (MaxDD). In parentheses we report the bootstrapped p-values testing the
difference in performance of mSSR against each of the alternatives. In the last column we report the implied leverage.
Panel B reproduces the performance of mSSR, denoted with ωt, and reports performance measures associated with the
two components of the portfolio (see Eq. (8)): the location component ω1t and the skewness hedging component ω2t.
The out-of-sample period is from January 1st 1930 to December 31st 2020.

Panel A: Performance metrics

Strategies Sharpe Sortino STARR RR VaR ES dVol Skew MaxDD Leverage
mSSR 1.573 2.513 14.256 1.309 −3.231 −4.770 10.738 0.153 0.349 0.573

cdVol 1.432
(0.139)

2.095
(0.037)

11.604
(0.003)

1.005
(0.027)

−4.186
(0.000)

−5.333
(0.580)

11.720 −0.035 0.565 1.527

DM2016 1.375
(0.107)

2.011
(0.035)

11.479
(0.020)

1.077
(0.051)

−3.870
(0.000)

−5.179
(0.087)

11.731 0.021 0.427 0.970

BS2015 1.262
(0.014)

1.812
(0.005)

10.135
(0.002)

0.974
(0.021)

−4.156
(0.000)

−5.384
(0.086)

11.950 −0.043 0.462 0.243

WML 0.737
(0.000)

1.017
(0.000)

5.914
(0.000)

0.936
(0.000)

−3.791
(0.000)

−5.387
(0.002)

12.435 −0.056 1.137

Panel B: mSSR performance decomposition

Components Sharpe Sortino STARR RR VaR ES dVol Skew MaxDD
w 1.573 2.513 14.256 1.309 -3.231 -4.770 10.738 0.153 0.349
w1 1.652 2.571 14.223 1.226 -4.408 -6.206 13.623 0.100 0.496
w2 0.645 0.926 12.933 0.974 -3.035 -4.176 8.833 -0.002 1.416

while the SR from DM2016 is statistically equivalent to our mSSR adjustment (pval = 0.107), the

BS2015 produces significantly lower risk-adjusted return (pval = 0.014). Scaling by semi-volatility

also improves upon the original WML portfolio, with a SR of 1.43 that is statistically equivalent to

mSSR (pval = 0.139). Note the average leverage implied by DS2016 and cdVol is almost two and

three times larger than mSSR, respectively.

The competitive SR obtained from our skewness-adjusted method does not translate into higher

downside risk. The Sortino ratio of 2.5 obtained from mSSR is both economically and statistically
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larger than all the other strategies. In comparison, the original WML factor has a Sortino ratio of 1.017

(pval = 0.000). More generally, our mSSR strategy outperforms, both economically and statistically,

all competing methods in terms of realised downside risk. For example, mSSR produces a STARR of

14.2 compared to 11.4 (pval = 0.020) and 10.1 (pval = 0.002) obtained from DM2016 and BS2015,

respectively. Similar conclusions can be drawn also by looking at other downside risk measures.

For instance, mSSR produces an RR of 1.3, compared to 1.1 (pval = 0.051) and 0.97 (pval = 0.021)

obtained from DM2016 and BS2015, respectively.

When separating the performance of ω1,t and ω2,t in Eq. (8) an interesting observation arises.

The first component ω1,t yields a higher SR than ω2,t. This implies that adjusting for skewness

may harm the portfolio’s overall performance. However, ω2,t results in lower VaR, ES, and dVol.

Consequently, combining the two leads to significant enhancements in all downside risk measures

and overall higher performance when measured with the STARR and RR metrics. The combined

portfolio exhibits a lower maximum drawdown and a more positively skewed return distribution than

either component individually. This supports the notion that ω2,t serves as an insurance component

against downside risk, which could be particularly beneficial for investors who prioritize avoiding

losses over maximizing gains (e.g., Kraus and Litzenberger, 1976; Kahneman and Tversky, 2013).

5.1 Additional results

We expand the main economic evaluation and implement a variety of alternative exercises. First,

we examine the models’ performance based on short-term and intermediate momentum strategies.

Next, we investigate the role of leverage constraints on the capital adjustment implied by (7) and

transaction costs on the strategy’s profitability. Finally, we investigate the robustness of the main

results by focusing on the post-1950 subsample or by implementing the capital adjustment monthly

instead of daily.

Alternative momentum portfolios. Table 3 reports the performance of our mSSR strategy for

both the short-term 6_2 and intermediate 12_7 momentum portfolios. The results are consistent

with the 12_2 momentum portfolio. A dynamic leverage adjustment that accounts for time-varying
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skewness has a more decisive effect on mitigating the exposure to downside risk than achieving a

higher risk-adjusted return. For instance, our mSSR strategy produces a significantly higher Sortino

ratio, STARR, RR, and a lower VaR and ES. In addition, the average leverage from our approach

is substantially lower than the one required by cdVol and the DM2016 strategy. This implies less

binding liquidity constraints.

Table 3: Alternative momentum portfolios

The table reports a series of performance measures on the daily returns on our skewness-adjusted maximum conditional
Sharpe ratio strategy (mSSR) against a variety of alternative managed-momentum portfolios. We consider Daniel and
Moskowitz (2016) (DM2016) and Barroso and Santa-Clara (2015) (BS2015) which are based on recursive estimates of
the realised variance, as well as a semi-volatility targeting as proposed by Wang and Yan (2021) and Hanauer and
Windmüller (2023). Specifically, the performance measures in each of the columns are, in order, the Sharpe ratio, the
Sortino ratio, the Stable Tail Adjusted Return ratio (STARR), the Rachev ratio (RR), the Value-at-Risk (VaR), the
Expected Shortfall (ES), the volatility of excess return conditional on being negative (dVol), the sample skewness of
excess returns, and the maximum drawdown (MaxDD). In parentheses we report the bootstrapped p-values testing the
difference in performance of mSSR against each of the alternatives. In the last column we report the implied leverage.
Panel A reports the results for the intermediate momentum 12_7 portfolio, whereas Panel B reports the results for
the short-term momentum 6_2 portfolio. The out-of-sample period is from January 1st 1930 to December 31st 2020.

Panel A: Intermediate momentum 12_7

Strategies Sharpe Sortino STARR RR VaR ES dVol Skew MaxDD leverage
mSSR 1.380 2.155 12.169 1.249 −3.355 −4.901 10.982 0.130 0.547 0.641

cdVol 1.274
(0.161)

1.873
(0.071)

10.533
(0.014)

1.043
(0.335)

−4.155
(0.000)

−5.229
(0.359)

11.671 −0.021 0.442 1.785

DM2016 1.209
(0.143)

1.779
(0.092)

9.852
(0.338)

1.092
(0.147)

−4.034
(0.000)

−5.306
(0.334)

11.658 0.028 0.563 0.998

BS2015 1.134
(0.046)

1.646
(0.018)

9.342
(0.146)

1.027
(0.089)

−4.139
(0.000)

−5.248
(0.983)

11.820 −0.023 0.577 0.280

WML 0.734
(0.000)

1.030
(0.000)

5.974
(0.017)

0.984
(0.000)

−3.782
(0.000)

−5.308
(0.015)

12.218 −0.038 1.040

Panel B: Short-term momentum 6_2

Strategies Sharpe Sortino STARR RR VaR ES dVol Skew MaxDD leverage
mSSR 1.210 1.843 10.593 1.237 −3.382 −4.928 11.242 0.112 0.472 0.503

cdVol 1.123
(0.369)

1.621
(0.222)

9.905
(0.008)

0.990
(0.496)

−4.273
(0.000)

−5.360
(0.541)

11.886 −0.047 1.027 1.589

DM2016 1.189
(0.861)

1.746
(0.662)

9.455
(0.048)

1.073
(0.694)

−3.972
(0.000)

−5.422
(0.204)

11.653 0.033 0.544 0.843

BS2015 1.004
(0.105)

1.430
(0.056)

7.857
(0.063)

0.966
(0.123)

−4.251
(0.000)

−5.510
(0.454)

12.013 −0.045 0.953 0.253

WML 0.517
(0.000)

0.697
(0.000)

4.065
(0.024)

0.930
(0.000)

−3.752
(0.004)

−5.488
(0.006)

12.697 −0.054 1.799

The similarity of the performance for different momentum portfolios does not come as a surprise.

28



Figure E1 in Appendix E.1 shows that the estimates of conditional volatility and skewness for the

12_7 and 6_2 momentum portfolios are similar to the 12_2 portfolio. For instance, both alternative

momentum portfolios experienced spikes in return volatility during the great depression, which co-

incided with deepening negative skewness. Return asymmetry tends to deteriorate during economic

recessions while becoming negligible, or at times positive, during economic expansions, especially

if an upturn in economic activity occurs for prolonged periods. Overall, conditional volatility and

skewness dynamics are rather consistent across momentum portfolios.

For completeness, Figure E2 in Appendix E.1 also reports the estimates of conditional skewness

based on the NYSE breakpoints as in Fama and French (1996). The trajectory of the conditional

skewness is broadly consistent with the 12_2 portfolio constructed from the all-firm breakpoints

used in the main empirical analysis. The correlation between the two estimates is as high as 70%,

even when looking at noisy daily estimates.

Leverage constraints. The capital adjustment in Eq. (7) is unconstrained, and ωt can be large

for small levels of conditional volatility or can take negative values. For instance, the DM2016

implementation leaves open the possibility of negative ωt as far as there is a negative correlation

between volatility and return during recessions (see Figure 5 in Daniel and Moskowitz, 2016). Table 2

confirms that some adjustments can require, on average, as much as 1.5 times more capital than

the one invested in the original WML portfolio. This can exacerbate liquidity needs or lead to a

switch from momentum to a reversal strategy and thus can cast doubt on the actual feasibility of

implementing Eq. (7) under reasonable liquidity or operational constraints (e.g., Harvey et al., 2018;

Patton and Weller, 2020).

For this reason, we investigate the performance across models under a leverage cap and forbidding

negative weights. We follow Moreira and Muir (2017); Cederburg et al. (2020); Barroso and Detzel

(2021); Wang and Yan (2021) and implement two sets of leverage constraints. Panel A in Table 4

reports the results for the baseline 12_2 momentum portfolio with an x5 leverage constraint, i.e.,

ωt ∈ (0, 5) ∀t. In parentheses, we report the bootstrap p-values for all performance measures.
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Table 4: Accounting for portfolio constraints

The table reports a series of performance measures on the daily returns on our skewness-adjusted maximum conditional
Sharpe ratio strategy (mSSR) against a variety of alternative managed-momentum portfolios. We consider Daniel and
Moskowitz (2016) (DM2016) and Barroso and Santa-Clara (2015) (BS2015) which are based on recursive estimates of
the realised variance, as well as a semi-volatility targeting as proposed by Wang and Yan (2021) and Hanauer and
Windmüller (2023). Specifically, the performance measures in each of the columns are, in order, the Sharpe ratio, the
Sortino ratio, the Stable Tail Adjusted Return ratio (STARR), the Rachev ratio (RR), the Value-at-Risk (VaR), the
Expected Shortfall (ES), the volatility of excess return conditional on being negative (dVol), the sample skewness of
excess returns, and the maximum drawdown (MaxDD). In parentheses we report the bootstrapped p-values testing the
difference in performance of mSSR against each of the alternatives. In the last column we report the implied leverage.
All strategies are constrained such that ωt ∈ (0, 5) ∀t in the firs panel, and ωt ∈ (0, 1.5) ∀t in the second panel. The
out-of-sample period is from January 1st 1930 to December 31st 2020.

Strategies Sharpe Sortino STARR RR VaR ES dVol Skew MaxDD Leverage

Panel A: x5 leverage cap
mSSR 1.671 2.688 15.174 1.348 −3.062 −4.761 10.666 0.193 0.261 0.703

cdVol 1.402
(0.013)

2.095
(0.004)

11.605
(0.000)

1.005
(0.935)

−4.186
(0.000)

−5.333
(0.040)

11.720 −0.037 0.565 1.506

DM2016 1.373
(0.005)

2.007
(0.002)

11.453
(0.000)

1.078
(0.240)

−3.873
(0.148)

−5.182
(0.012)

11.732 0.023 0.428 0.868

BS2015 1.262
(0.000)

1.812
(0.000)

10.135
(0.000)

0.974
(0.279)

−4.156
(0.062)

−5.384
(0.002)

11.950 −0.043 0.462 0.213

WML 0.737
(0.000)

1.017
(0.000)

5.914
(0.000)

0.936
(0.006)

−3.791
(0.000)

−5.387
(0.000)

12.435 −0.056 1.137

Panel B: x1.5 leverage cap
mSSR 1.573 2.513 14.256 1.309 −3.231 −4.770 10.738 0.153 0.349 0.573

cdVol 1.394
(0.140)

2.035
(0.041)

11.262
(0.000)

0.992
(0.587)

−4.188
(0.003)

−5.349
(0.177)

11.751 −0.047 0.558 1.652

DM2016 1.375
(0.100)

2.011
(0.037)

11.479
(0.000)

1.077
(0.081)

−3.870
(0.113)

−5.179
(0.093)

11.731 0.021 0.427 0.970

BS2015 1.262
(0.012)

1.812
(0.004)

10.135
(0.000)

0.974
(0.087)

−4.156
(0.071)

−5.384
(0.021)

11.950 −0.043 0.462 0.243

WML 0.737
(0.000)

1.017
(0.000)

5.914
(0.000)

0.936
(0.002)

−3.791
(0.002)

−5.387
(0.000)

12.435 −0.056 1.137

Unlike the unconstrained case, the SR significantly favours our mSSR strategy. The second best

approach, cdVol, produces an SR of 1.402 against a 1.671 obtained from mSSR. The null hypothesis

that the SRs are statistically equivalent is strongly rejected (pval = 0.013). Our mSSR also retains an

advantage in pure exposure to downside risk. For instance, the Sortino ratio, the STARR, the VaR,

and the ES significantly favour mSSR. The realised sample skewness and the maximum drawdown also

favour our mSSR strategy compared to other methods. Panel B shows that the results are broadly

consistent with a more restrictive x1.5 leverage constraint, i.e., ωt ∈ (0, 1.5) ∀t.
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Subsample analysis. In the main empirical analysis, the out-of-sample period is from January 1st,

1930, to December 31st, 2020. Given all the institutional changes in the US stock market, one may

wonder if the data from the pre-World War II period may be relevant for investors today. In addition,

the results so far indicate that the momentum crash of the 1930s had a substantial role in shaping

the risk-return trade-off of the momentum portfolio to this date. This is due to the compounding

nature of the return of a buy-and-hold strategy in the WML (see Section 2). To mitigate concerns

about sample selection, we investigate the performance of different dynamic leverage strategies post-

World War II. Specifically, we use three years of daily return as an initial burn-in sample for the

recursive estimates to generate the initial portfolio choice on January 1st, 1950 and 1970.

Table 5 reports the results. The performance in the two subsamples is notably stronger across

methods, including the original WML portfolio, especially regarding SR and Sortino ratios. Neverthe-

less, all time-series capital adjustments still improve upon the WML portfolio. Consistent with the

longer out-of-sample results (see Table 2), our mSSR produces a comparable, statistically equivalent

SR, but at the same time, significantly lower exposure to downside risk. The gap in favour of our

mSSR regarding downside risk mitigation is confirmed for all performance metrics. Comparing the

results for the post-1970 sample to the post-1950, it is noticeable that while all alternatives produce

relatively stable performance, mSSR shows a marked improvement both in terms of Sortino, STARR

and Ratichev ratio, without any marked difference in the downside risk metrics.

Transaction costs. The last column of Table 2 shows that our mSSR strategy implies, on average,

quite conservative leverage. The average ωt is 0.57 for the mSSR, vs 1.5 and 0.97 for cdVol and

DM2016, respectively. Perhaps not surprisingly, a smoother volatility estimate, such as the six-

month realised variance used by BS2015, helps to reduce turnover (e.g., Barroso and Detzel, 2021

and Bernardi et al., 2022). The same conclusion can be drawn for alternative momentum portfolios

(see Table 3) and for a monthly capital adjustment (see Table 8).

To investigate the economic cost of turnover across strategies, we evaluate the performance for

all methods after transaction costs.15 Specifically, we implement three different notions of trading
15Notice that our goal is not to propose an actual trading strategy that can be implemented “off the shelf”, but
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Table 5: Subsample analysis

The table reports a series of performance measures on the daily returns on our skewness-adjusted maximum conditional
Sharpe ratio strategy (mSSR) against a variety of alternative managed-momentum portfolios. We consider Daniel and
Moskowitz (2016) (DM2016) and Barroso and Santa-Clara (2015) (BS2015) which are based on recursive estimates of
the realised variance, as well as a semi-volatility targeting as proposed by Wang and Yan (2021) and Hanauer and
Windmüller (2023). Specifically, the performance measures in each of the columns are, in order, the Sharpe ratio, the
Sortino ratio, the Stable Tail Adjusted Return ratio (STARR), the Rachev ratio (RR), the Value-at-Risk (VaR), the
Expected Shortfall (ES), the volatility of excess return conditional on being negative (dVol), the sample skewness of
excess returns, and the maximum drawdown (MaxDD). In parentheses we report the bootstrapped p-values testing
the difference in performance of mSSR against each of the alternatives. The out-of-sample is from January 1st, 1950,
to December 31st, 2020.

Strategies Sharpe Sortino STARR RR VaR ES dVol Skew MaxDD Leverage

Panel A: Post-1950 sample
mSSR 1.805 2.944 16.523 1.344 −3.212 −4.722 10.515 0.162 0.323 0.628

cdVol 1.646
(0.219)

2.447
(0.063)

13.468
(0.295)

1.029
(0.002)

−4.186
(0.000)

−5.283
(0.040)

11.537 −0.032 0.567 1.602

DM2016 1.657
(0.290)

2.481
(0.071)

13.867
(0.204)

1.117
(0.118)

−3.915
(0.000)

−5.166
(0.041)

11.458 0.032 0.432 1.169

BS2015 1.500
(0.027)

2.195
(0.010)

12.091
(0.037)

1.001
(0.003)

−4.184
(0.000)

−5.363
(0.008)

11.722 −0.037 0.465 0.257

WML 0.883
(0.000)

1.224
(0.000)

7.108
(0.000)

0.969
(0.002)

−3.713
(0.002)

−5.372
(0.004)

12.376 −0.036 1.192

Panel B: Post-1970 sample
mSSR 1.985 3.318 18.512 1.390 −3.160 −4.636 10.263 0.179 0.305 0.542

cdVol 1.649
(0.030)

2.457
(0.011)

13.555
(0.034)

1.036
(0.168)

−4.201
(0.000)

−5.257
(0.386)

11.511 −0.034 0.562 1.417

DM2016 1.676
(0.057)

2.528
(0.025)

14.052
(0.032)

1.128
(0.823)

−3.906
(0.000)

−5.156
(0.114)

11.373 0.037 0.449 1.017

BS2015 1.456
(0.002)

2.125
(0.001)

11.684
(0.001)

0.992
(0.916)

−4.224
(0.000)

−5.386
(0.065)

11.749 −0.042 0.464 0.224

WML 0.809
(0.000)

1.115
(0.000)

6.382
(0.000)

0.954
(0.001)

−3.887
(0.000)

−5.481
(0.003)

12.446 −0.052 1.060

costs: first, we follow DeMiguel et al. (2009) and calculate the evolution of wealth for strategy i as

Wi,t+1 = Wi,tRi,t

(
1− c|ωi,t+1 − ω+

i,t|
)

with Ri,t = 1+Ri,t the gross return at time t, ω+
i,t = Ri,tωi,t−1

the time t weights after accruing the return (e.g., Detzel et al., 2023) and |ωi,t+1 − ω+
i,t| and c the

turnover for a given period and the transaction costs. Thus, a strategy performance net of transaction

costs can be computed as r−c =
Wi,t+1

Wi,t
−1. Second, we follow Della Corte et al. (2008) and evaluate

rather to show the economic value of expanding the notion of risk to the third moment. Thus, although simplistic, we
believe that considering different cost measures could help shed further light on the incremental value of accounting
for time-varying skewness in momentum return.
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the maximum performance fee an investor with a quadratic utility function would be willing to pay

to access a given managed-momentum strategy. Specifically, for any pair (i, j) of strategies, the fee

F arises as the solution of,

T−1∑
t=0

(Ri,t −F)− δ(Ri,t −F)2

2(1− δ)
=

T−1∑
t=0

Rj,t −
δR2

j,t

δ(1− δ)
, (9)

where δ is the degree of relative risk aversion. Third, we consider a measure of abnormal return

as in Modigliani and Modigliani (1997). That is, for any pair of strategies (i, j), we leverage up or

down strategy i to match the downside-risk profile of strategy j, and we evaluate the annualised

abnormal return as follows dAi,j = dV oli(Sortinoi − Sortinoj).

Table 6: Accounting for transaction costs

The table reports the out-of-sample terminal returns net of transaction costs (r − c, DeMiguel et al., 2009), the
performance fee (F) of Fleming et al., 2003), and the downside-abnormal return (dA, Modigliani and Modigliani,
1997). We report the results for our skewness-managed strategy (mSSR) against a constant downside volatility targeting
(cdVol) and the same exact implementation of Daniel and Moskowitz (2016) (DM2016) and Barroso and Santa-Clara
(2015) (BS2015) which are based on recursive estimates of the realised variance. The performance fees are computed for
a risk aversion coefficient of 5. All the measures are reported in annual basis points. The out-of-sample period is from
January 1st 1930 to December 31st 2020. Portfolio weights are generated by recursively estimating the conditional
mean and variance of the returns based on the model parameters. The first three years are used as a burn-in period.

Costs (bps) mSSR cdVol DM2016 BS2015

r − c dA F r − c dA F r − c dA F r − c dA F

0 14.328 18.594 10.595 11.894 13.378 8.198 10.902 12.291 7.189 8.957 9.809 5.297
1 13.914 18.075 10.216 11.706 13.164 7.946 10.862 12.244 7.189 8.962 9.815 5.297
5 12.258 16.010 8.450 10.956 12.313 7.189 10.702 12.059 6.937 8.982 9.839 5.171
10 10.187 13.455 6.432 10.017 11.254 6.180 10.503 11.827 6.685 9.008 9.867 5.171

We calculate the fee F relative to the original WML portfolio and consider a risk aversion of δ = 5

(e.g., Rapach and Zhou, 2013; Pettenuzzo et al., 2014; Bianchi et al., 2021). We explore different

levels of transaction costs, ranging from 0 to 10 bps. The latter represents a non-trivial execution cost

to trade an “ETF-like” momentum portfolio. The cost of building the actual momentum portfolio is

arguably higher, although symmetric for all managed momentum strategies and therefore irrelevant

for any relative comparisons between strategies (see e.g., DeMiguel et al., 2020).

Table 6 reports the results. Our mSSR strategy produces a higher annualised average return
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after transaction costs and commands higher performance fees than all competing strategies. The

performance fee remains largely in favour of mSSR for different levels of transaction costs. For

instance, with 10 basis points of rebalancing costs the abnormal performance dAi,j – relatively to

WML – of the mSSR is 13.3% (annualised), against 11.9%, 11.3% and 9.8% for the DM2016, BS2015 and

cdVol, respectively.

Appendix E reports the results obtained by repeating the economic evaluation of Table 6 for

different levels of risk aversion of δ = 2, 7, 15. Interestingly, a time-varying skewness adjustment

becomes even more valuable for a more risk-averse investor. This supports the intuition that the

insurance component represented by the skewness adjustment becomes more valuable as investors

dislike the potential losses of the original WML portfolio even more.

Spanning tests. We estimate a series of factor-spanning regressions whereby the daily return on

each adjusted momentum portfolio is regressed onto a host of factors, including the market, size

and value factors from Fama and French (1993), the original WML portfolio, the dynamic volatility

adjustment of Daniel and Moskowitz (2016) and the constant volatility adjustment of Barroso and

Santa-Clara (2015). Table 7 reports the annualised alphas and corresponding t-stats (in parenthesis).

Table 7: Factor spanning regressions

The table reports the results of a series of factor spanning regressions where the dependent variables are the returns on
different managed momentum portfolios based on our skewness-adjusted maximum conditional Sharpe ratio strategy
(mSSR), the original maximum Sharpe ratio adjustment ofDaniel and Moskowitz (2016) (DM2016), the constant volatility
targeting of Barroso and Santa-Clara (2015) (BS2015), and semi-volatility targeting as proposed by Wang and Yan
(2021) and Hanauer and Windmüller (2023). Each portfolio returns is regressed onto the market and other Fama and
French (1993) common risk factors in addition to the original WML portfolio. The sample size is from January 1st 1930
to December 31st 2020, daily.

Mkt+WML FF3+WML Mkt+cdVol FF3+cdVol Mkt+DM2016 FF3+DM2016 Mkt+BS2015 FF3+BS2015

mSSR 26.374
(13.765)

26.366
(13.762)

15.249
(9.355)

15.234
(9.348)

27.471
(13.749)

27.453
(13.743)

27.923
(13.944)

27.906
(13.939)

cdVol 15.410
(13.961)

15.431
(13.980)

23.521
(12.015)

23.517
(12.015)

23.774
(12.142)

23.773
(12.143)

DM2016 25.254
(12.741)

25.274
(12.751)

22.248
(11.424)

22.265
(11.434)

3.614
(5.306)

3.625
(5.322)

BS2015 22.527
(11.519)

22.535
(11.523)

19.779
(10.269)

19.784
(10.273)

−0.206
(−0.309)

−0.216
(−0.323)

The first column reports the results controlling for the market (Mkt) and the WML portfolio. The
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intercept is highly significant for all strategies, with the highest value for mSSR (26.3% annualised, t-

stat = 13.7). This indicates that the Mkt and WML portfolios cannot explain the performance of mSSR.

The second column adds the size and value factors as further regressors. All the alphas are again

highly significant, with our mSSR strategy showing the largest intercept (26.3% annualised, t-stat =

13.7). Hence, conventional equity factors cannot explain the performance of mSSR. Columns 3 and 4

replace the WML portfolio with the return on the cdVol strategy. The intercepts drop in magnitude

but remain highly significant throughout. This is surprising since cdVol should capture the downside

risk exposure. Overall, the evidence suggests that the performance of managed momentum strategies

remains substantially high even after controlling for asymmetric volatility.

The last four columns in Table 7 replace the WML portfolio with the return on either the Daniel

and Moskowitz (2016) or the Barroso and Santa-Clara (2015) strategy. The results show that these

managed momentum portfolios cannot fully explain the return on our skewness-adjusted strategy.

Interestingly, the intercept on BS2015 is no longer statistically significant when conditioning on the

Daniel and Moskowitz (2016) managed portfolio, whereas the intercept of DM2016 is still significant

when conditioning on the Barroso and Santa-Clara (2015). This confirms that a maximum Sharpe

ratio strategy generally subsumes constant volatility targeting.

Monthly capital adjustment. The performance outlined in Table 2 concerns daily adjustments

based on Eq. (7). Specifically, the momentum decile portfolios are rebalanced monthly, but the

capital adjustment implied by ωt is implemented daily. To enhance the comparability with existing

studies, we investigate the performance across methods for a lower-frequency monthly implementa-

tion of the capital adjustment ωt.16

Table 8 reports the results for the 12_2 momentum portfolio. Overall, the effectiveness of the

leverage adjustment decreases quite substantially when implemented monthly; that is, the perfor-

mance at a monthly frequency is notably lower.17 This corroborates the intuition in Novy-Marx
16To mitigate the effect of aggregation from high to lower frequency return in a portfolio context (e.g., Boguth et al.,

2016), for the monthly adjustment, in practice, we re-scale and aggregate the estimated conditional mean and variance
from daily to monthly.

17Therefore, once the loss in performance is fully accounted for, it is unclear whether a lower-frequency implemen-
tation of Eq. (7) would effectively reduce transaction costs.
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Table 8: Monthly capital adjustment

The table reports the performance on our skewness-adjusted maximum conditional Sharpe ratio strategy (mSSR)
against a variety of alternative managed-momentum portfolios. We consider Daniel and Moskowitz (2016) (DM2016)
and Barroso and Santa-Clara (2015) (BS2015) which are based on aggregating daily recursive estimates of the realised
variance, as well as a semi-volatility targeting as proposed by Wang and Yan (2021) and Hanauer and Windmüller
(2023). The capital adjustment in Eq. (7) is implemented monthly instead of daily. We report in parentheses the
bootstrapped p-values for the difference in the performance of mSSR against each of the alternatives. The out-of-sample
period is from January 1930 to December 2020.

Strategies Sharpe Sortino STARR RR VaR ES dVol Skew MaxDD Leverage
mSSR 1.093 2.561 2.807 2.101 −0.525 −0.869 7.936 0.405 0.349 0.684

cdVol 1.292
(0.000)

2.832
(0.326)

3.159
(0.000)

1.490
(0.060)

−0.739
(0.002)

−0.983
(0.655)

9.134 0.027 0.402 1.049

DM2016 1.159
(0.392)

2.311
(0.352)

2.632
(0.550)

1.703
(0.579)

−0.684
(0.095)

−0.982
(0.208)

9.323 0.221 0.547 0.910

BS2015 1.082
(0.869)

1.836
(0.003)

2.053
(0.858)

1.209
(0.069)

−0.841
(0.001)

−1.176
(0.040)

10.957 −0.010 0.506 0.351

WML 0.641
(0.006)

0.877
(0.000)

1.079
(0.001)

0.925
(0.006)

−0.881
(0.005)

−1.326
(0.024)

13.599 −0.092 1.028

and Velikov (2019); monthly rebalancing reduces the strategy’s profitability due to the signal’s stal-

eness at a monthly frequency. This is the case for our mSSR, which highlights the importance of

high-frequency variation in downside risk.18

6 Implications for asset pricing models

Grundy and Martin (2001) document that the asymmetric nature of the momentum exposure to

market risk is at the core of momentum crashes. We build upon this intuition and attempt to

provide a more structured asset pricing interpretation of the uncovered time-varying skewness risk

in momentum return. Consider a state-dependent CAPM specification which separates up-market

and down-market betas for the momentum return rt,

rt = α+ βmtI(mt ≥ µm) + βmtI(mt < µm)︸ ︷︷ ︸
βmt

+et (10)

18At the same time, our mSSR produces the lowest realised downside risk, as shown by the lowest VaR and ES, the
highest RR and the largest positive return skewness. Appendix E.3 reports the results for the 12_7 and 6_2 portfolios.
The results are consistent with the 12_2 momentum portfolio.
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with mt ∼ N
(
µm, σ2

m

)
the normally distributed market portfolio and I(mt ≥ µm) (or I(mt < µm))

an indicator function that takes value one if the market return mt are above (or below) the mode

µm and zero otherwise. Ang et al. (2006) suggest that a conditional CAPM as Eq. (10) can be

interpreted as a reduced form representation of a general equilibrium model with a disappointment-

aversion utility function in which a representative investor has a higher sensitivity to losses versus

gains (e.g., Kraus and Litzenberger, 1976; Gul, 1991; Kahneman and Tversky, 2013). Conditional

on I(·), the systematic component βmt can be characterised by a two-piece continuous distribution

(e.g., Johnson et al., 1995), such that the difference between the expected value E [βmt] and the

mode βµm takes the form (see Appendix G),

E [βmt]− βµm =

√
2

π
(σm − σm) ∝ σm

(
β − β

)
(11)

with σ2
m = β2σ2

m and σ2
m = β

2
σ2
m. Under the assumption of equal betas between market states,

β = β = β, we obtain that E [βmt] = βµm, V [βmt] = β2σ2
m, such that the marginal distri-

bution of the momentum strategy return is equivalent to a standard CAPM formulation rt ∼

N
(
α+ βµm, β2σ2

m + σ2
e

)
. Instead, with asymmetric betas β ̸= β and sign

(
β
)
= sign

(
β
)
, Eq. (11)

suggests that for β < β (β > β) the expected value of the systematic CAPM component is lower

(higher) than the mode (e.g., Arnold and Groeneveld, 1995). As a result, even if the market return

mt and the residual et are both normally distributed, the marginal distribution of rt can still be

negatively (positively) skewed, with the level of skewness that depends on how far apart are the

state-dependent betas.19

Appendix F.1 reports the sample estimates of the upside and downside market betas for daily

return on the past losers, past winners, and the WML portfolios. Consistent with Grundy and Martin

(2001), the estimates show that the past losers portfolio is more exposed to upside market risk

(β = 1.36) compared to downside market risk (β = 1.27). The opposite holds for past winners

(β = 1.09, β = 1.22). Thus, the WML strategy shows a sizable, negative up-market beta (β = −0.27),
19Notice this holds with the sign of the betas being the same, i.e., sgn

(
β
)
= sgn

(
β
)
. Instead, under sgn

(
β
)
̸=

sgn
(
β
)

the distribution of βmt conditional on the indicator I(·) is no longer a split-Normal but a mixture of normal
distributions with different means.
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Figure 9: State-dependent CAPM and simulated return
This figure reports the marginal distribution of the return on the momentum strategy (y-axis), the return on the
market portfolio (x-axis) and the corresponding joint distribution. return are simulated assuming a two-piece Normal
distribution (see Appendix G). The left panel shows the joint distribution for the full sample, whereas the middle and
the right panels show the joint return distributions for two different timestamps.

(a) Full sample (b) 22/03/1935 (c) 30/09/2008

while the down-market beta is closer to zero (β = −0.04). We plug these estimates in Eq. (10) and

simulate the marginal and joint distribution of the WML and the market portfolio returns. To isolate

the effect of the state-dependent betas on return skewness, we assume et is normally distributed

with mean zero and volatility equal to one, whereas mt is normally distributed with mean zero and

volatility equal to the sample standard deviation of the market return.

Figure 9 shows the simulated return distribution. The left column shows that the negative spread

in betas can generate a slightly negatively skewed marginal return distribution. The middle and

right columns expand the simulation by calculating β and β for two specific timestamps within crash

periods. The skewness of momentum return markedly differs from the full sample estimates. For

instance, in March 1935 – in the middle of the largest momentum crash – the average quarterly

difference β − β is as large as -1.5. As a result, the marginal distribution of the momentum return

(middle panel) is more negatively skewed (-0.805). Similarly, in September 2008, during the great

financial crisis, the average betas spread was -1.3, which generated a conditional skewness of -0.529.

38



6.1 Evidence from a time-varying CAPM

The simulation results suggest that an asymmetric exposure to market risk may have the potential

to rationalize the origin of conditional skewness in momentum return. It is, therefore, natural to

ask to what extent the pattern of time-varying skewness we document across alternative momentum

factors is just a reflection of potentially time-varying, state-dependent betas. To answer this question

Figure 10(a) shows the sample correlation between the conditional skewness implied by the spread

βt − β
t

(see Figure F2) and our estimated time-varying skewness for the 12_2 portfolio (see Figure

5). The conditional beta estimates are based on time-varying CAPM with asymmetric betas (see

Ang et al., 2006 and Appendix E).

Figure 10: Momentum skewness and aggregate market return
The left panel reports the conditional skewness estimated from our model against the conditional skewness generated
from an asymmetric CAPM based on the simulation study. The right panel compares the conditional skewness of the
WML portfolio and the aggregate market portfolio estimated from our model time-varying parameter model.

(a) Model-implied vs CAPM-implied skewness of WML (b) Model-implied skewness of the MKT vs WML

A positive correlation (0.39, pval = 0.000) exists between the skewness implied by the state-

dependent CAPM and our estimated conditional skewness. However, such correlation flattens during

the two major momentum crashes of 1932 (red dots) and 2009 (blue dots). This suggests that an

asymmetric CAPM with normally distributed market return and residuals is likely not flexible
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enough to capture the extent of the time variation in the conditional skewness of momentum return.

The reason is twofold. First, the CAPM residuals are not normally distributed. A set of unreported

results shows that the WML portfolio, net of market risk exposure, is still negatively skewed. Second,

the excess return on the market is also not normally distributed. Table 1 shows that excess market

return is negatively skewed, at least unconditionally (skewness= -0.476, pval = 0.059).

The correlation between the market and momentum conditional skewness is far from obvious.

Figure 10(b) shows that the estimates of the conditional skewness of the market and the WML portfolio

are only mildly negatively correlated (light grey line), with the correlation disappearing once two-

year average estimates are compared (magenta line).

The fact that a state-dependent CAPM cannot reconcile the dynamics of return skewness is

instrumental in highlighting one key advantage of our framework. By accounting for the conditional

skewness of the return, our model can parsimoniously summarize sources of non-normality beyond

asymmetric market betas. Indeed, while state-dependent CAPM betas can capture a fair deal of

asymmetry in the return conditional distribution, there is still a considerable amount of skewness in

momentum return that the correlation between the conditional skewness of the momentum strategy

and the market portfolio cannot reconcile.

7 Conclusions

We investigate the dynamic of skewness in equity momentum return through the lens of a flexi-

ble model that features time-varying location, scale, and asymmetry parameters. Empirically, we

uncover a pro-cyclical time variation of skewness, which tends to deepen during the so-called mo-

mentum crashes. This has important implications for the dynamic of the risk-return trade-off in

momentum portfolios and, ultimately, for managing the risk associated with momentum investing.
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Supplementary Appendix for:

Time-Varying Skewness and Momentum Crashes

This appendix provides an in-depth description of the econometric model and the circular block
bootstrap procedure implemented in Section 5 for performance testing. Specifically, we provide
detailed derivations for the scaled-scores vector and the conditional mean and variance of the returns
under the distributional assumptions outlined in the main text. In addition, we provide an extensive
discussion on the simulation results for the optimal choice of the block size of the circular block
bootstrap procedure. We also report a set of additional results concerning the time-varying skewness
for alternative momentum portfolio constructions and the sample estimates of the state-dependent
CAPM used to simulate momentum returns based on an asymmetric exposure to market risk (see
Section 6). All additional results are referred to in the main text where appropriate.

A Likelihood-based test for conditional skewness

We outline a likelihood-based test for conditional skewness and its corresponding results. The basic
idea of the test is to assume a given moment is constant in the data-generating process and then look
at the information contained over time in the gradient of the log-likelihood function (or score) with
respect to that moment (see Harvey, 2013). Assume the conditional distribution of the portfolio
returns being a Skew-t of Gómez et al. (2007) with time-varying location mt and scale σt, but fixed
shape parameter ρ. The latter pin down the degree of asymmetry in the conditional distribution of
the returns that is rt|F t−1 ∼ Sktν(mt, σ2

t , ρ). The gradient associated with the transformed shape
(asymmetry) parameter δ = arctanh ρ is defined as

∇δ,t =
s (εt)

(
1− ρ2

)
(1 + s (εt) ρ)

wtζ
2
t , (A1)

with ζt = ϵt/σt the standardised residuals ϵt = rt − mt, and wt = (1 + ν)/
(
ν (1 + s (εt)) ρ+ ζ2t

)
the

weight given to the squared of standardised residuals at each time t (see Section 3 and Appendix
B.1 for more details).

By looking at the autocorrelation properties of the score in Eq.(A1), a Lagrange multiplier
principle (LM) can be employed to formally test for the time variation of ρ (see, e.g., Calvori
et al., 2017). More specifically, tests for the time variation of ρ can be carried out using the score
autocorrelation function and implementing Portmanteau (P ) and Ljung-Box (Q) tests for the null
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Table A1: Likelihood-based test for conditional skewness

The table reports the results for a likelihood-based test for the time variation of the conditional skewness in the returns
of the 12_2 momentum portfolio. Here, P is the portmanteau test, Q is the Ljung-Box extension, and N corresponds
to the Nyblom test. The lag length for the Portmanteau and Ljung-Box tests are selected following Escanciano and
Lobato (2009). P and Q are distributed as a χ2

1, while N is distributed as a Cramer von Mises distribution with 1
degree of freedom. ∗p < 10%, ∗ ∗ p < 5%, ∗ ∗ ∗p < 1%.

Portfolios Autocorrelation tests
P Q N

losers > 100∗∗∗ > 100∗∗∗ 3.374∗∗∗

winners > 100∗∗∗ > 100∗∗∗ 7.991∗∗∗

WML > 100∗∗∗ > 100∗∗∗ 6.751∗∗∗

hypothesis of absence of autocorrelation in the score ∇δ,t, i.e., no time variation in ρ. The optimal
lag length for the P and Q tests is selected following the methodology by Escanciano and Lobato
(2009). In addition to the Portmanteau and Ljung-Box tests, we also report the results from a
general test for the null of constant parameters against a random-walk alternative based on the LM
principle as proposed by Nyblom (1989). In our case, the test statistics read as follows:

N = σ−2
∇ T−2

T∑
j=1

 T∑
k=j

∇δ,k

2

, (A2)

where ∇δ,k denotes the score of the distribution with respect to the transformed shape parameter
δ = arctanh ρ at time k and σ2

∇ represents the sample variance of the score. Harvey and Streibel
(1998) showed that although Nyblom (1989) is regarded as a test against a random walk alternative,
it can also be interpreted as a general test against the alternative hypothesis of time variation of a
given model parameters (see, e.g., Delle Monache et al., 2021).

Table A1 reports the results. The null hypothesis of a constant skewness is strongly rejected
against the alternative of time variation, with test statistics which are well above 100 and p-values
below the 0.01 threshold for both the long and the short legs of the momentum strategy as well
as the WML portfolio. The Nyblom test statistic follows a Cramer-von Mises distribution with a 5%
critical value of 0.462. The last column in Table A1 shows that the Nyblom test suggests that the
asymmetry, meaning the shape parameter, of the conditional distribution of each portfolios and the
WML strategy is likely not constant over time.
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B Modelling framework

Assume that the return yt is generated by the observation density D(θ, ft), with θ collecting the
static parameters of the distribution and ft a series of time-varying parameters which characterize
the first three moments of the conditional distribution:

ft+1 = ft +Ast, t = 1, . . . , T (B1)

where A contains the structural parameters regulating the law of motion of the distribution pa-
rameters, and st containing the likelihood information from the prediction error ε̂t. Specifically,
st = St∇t is the scaled score, with ∇t = J ′

t

[
∂ℓt
∂mt ,

∂ℓt
∂σ2

t
, ∂ℓt

∂ρt

]′
being the gradient of the log-likelihood

function with respect to the (nonlinear transformation of the) location, squared scale and asymmetry
parameters, Jt the Jacobian matrix associated to the non-linear transformation of the parameters
for σt and ρt and

St = I−1
t = −E

(
∂2ℓt

∂ft∂f ′
t

)−1

,

the scaling matrix proportional to the square-root generalized inverse of the Information matrix
It−1.20 Within this framework, the parameters are updated in the direction of the steepest ascent,
in order to maximize the local fit of the model. In the following, we are going to derive both gradient
of the log-likelihood function and the Jacobian matrix in order to define the scaled-scores vector.

B.1 Score derivations

The scaled score st is a non-linear function of past observations and past parameters’ values. For
ℓt = logD(θ, ft) being the Skew-t of Gómez et al. (2007), yt|Yt−1 ∼ sktν(mt, σ2

t , ρt), the log-likelihood
takes the form

ℓt(rt|θ,Ft−1) = log C(ν)− 1

2
log σ2

t −
1 + ν

2
log

[
1 +

ε2t
ν(1 + s(εt)ρt)2σ2

t

]
, (B2)

log C(ν) = log Γ

(
ν + 1

2

)
− log Γ

(ν
2

)
− 1

2
log ν − 1

2
log π,

where Γ(·) is the Gamma function and ν > 3 are the degrees of freedom. Differentiating (B2) with
respect to location, scale and asymmetry we obtain the gradient vector ∇t =

[
∂ℓt
∂m ,

∂ℓt
∂σ2

t
, ∂ℓt
∂ρt

]′
. Recall

20Refer to Creal et al. (2013) for additional details on this choice.

3



that εt = yt − mt, ζt = εt
σt

and let

f(mt, σ2
t , ρt) = 1 +

ε2t
ν(1 + s(εt)ρt)2σ2

t

=
ν(1 + s(εt)ρt)2σ2

t + ε2t
ν(1 + s(εt)ρt)2σ2

t

To avoid overburdening the notation, in what follows ∂f(x)
∂x = f ′

x and a = −1+ν
2 . The score with

respect to the location parameter reads

∂ℓt
∂mt

= wt
ζt
σt

, with wt =
ν + 1

ν (1 + s (εt) ρt)2 + ζ2t
.

Proof. Define
g(mt) = a log f(mt, σ2

t , ρt),

such that ∂ℓt
∂mt = ∂g(mt)

∂mt = a
f ′

mt
f(mt,σ2

t ,ρt)
. For

f ′
mt = − 2

ν(1 + s(εt)ρt)2σ2
t

εt,

it follows:

∂ℓt
∂mt

=
1 + ν

2

2

ν(1 + s(εt)ρt)2σ2
t

· εt ·
ν(1 + s(εt)ρt)2σ2

t

ν(1 + s(εt)ρt)2σ2
t + ε2t

=
(1 + ν)

ν(1 + s(εt)ρt)2σ2
t + ε2t

εt

= ωt
ζt
σt

.

The score with respect to the squared scale parameter reads

∂ℓt
∂σ2

t

=
(wtζ

2
t − 1)

2σ2
t

.

Proof. Define

g(σ2
t ) = − log σ2

t

2
+ a log f(mt, σ2

t , ρt),
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such that ∂ℓt
∂σ2

t
=

∂g(σ2
t )

∂σ2
t

= − 1
2σ2

t
+ a

f ′
σ2
t

f(mt,σ2
t ,ρt)

, with f ′
σ2
t
= − ε2t

ν(1+s(εt)ρt)2σ4
t
. It follows that:

∂ℓt
∂σ2

t

= − 1

2σ2
t

− 1 + ν

2
·
[
− ε2t

ν(1 + s(εt)ρt)2σ4
t

· ν(1 + s(εt)ρt)2σ2
t

ν(1 + s(εt)ρt)2σ2
t + ε2t

]
= − 1

2σ2
t

− 1 + ν

2
·
[
− ε2t

σ2
t

· 1

ν(1 + s(εt)ρt)2σ2
t + ε2t

]
= − 1

2σ2
t

+
wtζ

2
t

2σ2
t

=
(wtζ

2
t − 1)

2σ2
t

.

The score with respect to the shape parameter reads as

∂ℓt
∂ρt

=
s(εt)

(1 + s(εt)ρt)
wtζ

2
t .

Proof. Define
g(ρt) = a log f(mt, σ2

t , ρt),

such that ∂ℓt
∂ρt

= ∂g(ρt)
∂σ2

t
= a

f ′
ρt

f(mt,σ2
t ,ρt)

, with f ′
ρt = − 2(s(εt)+ρt)ε2t

ν(1+s(εt)ρt)4σ2
t
. It follows that:

∂ℓt
∂ρt

=
1 + ν

2
· 2(s(εt) + ρt)ε

2
t

ν(1 + s(εt)ρt)4σ2
t

· ν(1 + s(εt)ρt)2σ2
t

ν(1 + s(εt)ρt)2σ2
t + ε2t

=
(s(εt) + ρt)ε

2
t

(1 + s(εt)ρt)2
wt

σ2
t

=
s(εt)

(1 + s(εt)ρt)
wtζ

2
t

.

B.2 Scaled scores

Given we model γt = log σt and δt = atanh(ρt), for the chain rule we have:

∂ℓt
∂γt

=
∂ℓt
∂σ2

t

∂σ2
t

∂γt
,

∂ℓt
∂δt

=
∂ℓt
∂ρt

∂ρt
∂δt

, (B3)
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where ∂σ2
t

∂γt
= 2σ2

t and ∂ρt
∂δt

= (1 − ρ2t ). We can thus define the vector of interest as ft = (mt, γt, δt)′

with the associated Jacobian matrix

Jt =
∂(mt, σ2

t , ρt)

∂f ′
t

=

 1 0 0

0 2σ2
t 0

0 0 1− ρ2t

 . (B4)

The Fisher information matrix is computed as the expected value of outer product of the gradient
vector. Given the degrees of freedom ν > 3 this is computed as:

It = Et−1[∇t∇′
t] =


(1+ν)

(ν+3)(1−ρ2t )σ
2
t

0 4(1+ν)
σt(1−ρ2t )(3+ν)

0 1
2(3+ν)σ4

t
0

4(1+ν)
σt(1−ρ2t )(3+ν)

0 3(1+ν)
(1−ρ2t )(3+ν)

 . (B5)

As a result, the vector of scaled scores reads as:

st = (J ′
tdiag(It)Jt)−1J ′

t∇t =

 smt

sσt

sρt

 = χ


(1− ρ2t )wtεt

(ν + 1)(wtε
2
t − σ2

t )

s(εt)(1− s(εt)ρt)wt
ε2t
3σ2

t

 . (B6)

with χ = (ν+3)
(ν+1) and wt =

ν+1
ν(1+s(εt)ρt)2+ζ2t

.

B.3 Model properties

The scalar factor wt plays a key role as it serves as an implicit weight of the information contained
in the prediction error. We summarise some of its key properties in turn. Figure B1(a) plots
the weights associated with the prediction error for alternative model parametrisations. Under
a Normal distribution assumption, prediction errors are assumed to carry the same information
regardless of their magnitude, i.e., wt = 1, ∀t. When we consider thick tails but no asymmetry (red
line), the weights tend to discount symmetrically extreme prediction errors, as is typical of Student-
t distributions (see, e.g., Delle Monache and Petrella, 2017). When the distribution is negatively
skewed (dashed blue line), positive prediction errors are less likely and, as such, command a more
significant update of the parameters when they occur. The opposite holds when the distribution is
positively skewed (green dashed line); large negative prediction errors are less likely, and so command
a larger update on the parameters. The larger the asymmetry, i.e., ρt → 1, the larger the asymmetric
effect of prediction errors.

The remaining plots display Engle and Ng (1993)’s news impact curve, i.e. how new information
– measured by the standardised prediction error – translates into updates of the parameters of the
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Figure B1: Updating weights and news impact curves
The figure reports the weighting scheme implied by wt, and the news impact curve (NICs) for different values of the
prediction error ζt = εt/σt. We consider the Gaussian (black), the Student-t with ν = 5 (red), and positively (blue)
and negatively (green) Skew-t with ν = 5.

(a) Updating weights (b) Location

(c) Scale (d) Shape

model. Figure B1(b) shows that the location parameter updates in the direction of the prediction
error. Updates of the scale parameter (Figure B1(c)) are positive whenever the prediction error
is larger than the scale of the distribution, appropriately adapted to account for the difference in
positive and negative dispersion. Finally, Figure B1(d) shows that the shape parameter updates in
the opposite direction of the prediction error so that for negative prediction errors, the distribution
becomes more left-skewed.

7



Overall, the “news” contained in a given prediction error depends on how “unlikely” a priori is
such news, given the ex-ante conditional distribution of returns, and whether the prediction error is
perceived to be a tail observation. When the underlying distribution is fat-tailed, prediction errors
that are large – given the scale of the underlying distribution – are discounted, as they are partially
characterised as “outliers” and, as such, are associated with smaller updates of the underlying
distribution. For the location parameter (Figure B1(b)), this property translates into the typical
S-shaped function of the location in contrast with a classical linear updating in a Gaussian setting
(see, e.g., Harvey and Luati, 2014). The asymmetry of the distribution also plays a key role in
mapping the prediction errors onto the updating mechanism. When the distribution is left-skewed,
a positive (negative) prediction error is ex-ante less (more) likely, and therefore when observed,
it commands stronger (weaker) revisions in the underlying distribution. The opposite holds for
right-skewed returns.

The joint role of the conditional estimates in the updating mechanism of the parameters allows
for the timely detection of shifts in the shape of the conditional distribution of the returns, while
at the same time discounting the effect of outlying observations. In addition, while the scores for
the location and shape parameters are negatively correlated, updates of σt are (unconditionally)
uncorrelated with revisions of the other parameters. Yet, during crashes, when prediction errors are
large and negative, updates on the scale and the shape parameters positively co-move so that the
conditional distribution of the momentum returns features negative shifts in the location, increasing
dispersion and deepening negative skewness.

B.4 Estimation procedure

A feature of observation-driven models is the straightforward computation of the likelihood function
(see, e.g., Creal et al., 2013; Harvey, 2013). Arellano-Valle et al. (2005) show that a Skew-t distribu-
tion can be expressed as a combination of strictly positive densities. For our modelling framework,
we follow Fernández and Steel (1998) and characterise the conditional log-likelihood as a two-piece
distribution;

ℓt(rt|θ, ft) = const − 1

2
log σ2

t −
1 + ν

2

log
[
1 +

ε2t
ν(1+sgn(εt)ρt)2σ2

t

]
, rt ≥ mt

log
[
1 +

ε2t
ν(1−sgn(εt)ρt)2σ2

t

]
, rt < mt

(B7)

where θ = (ν,A) collects the time-invariant degrees of freedom and the score loadings. Maximum
likelihood estimation of the latent states ft and static parameters θ can be achieved via a prediction
error decomposition (see Blasques et al., 2022). However, given the random-walk nature of the
time-varying parameters, the maximum likelihood estimator tends to put a large point mass at
zero, an issue known as the “pile-up problem” (see, e.g., Sargan and Bhargava, 1983; Anderson and
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Takemura, 1986; Tanaka and Satchell, 1989; Stock and Watson, 1998). To address this issue, we
discipline the parameter space by introducing a minimum set of priors on the score loadings and
the degrees of freedom, which are quite uninformative in that any evidence of time variation must
reflect strong evidence in the data.

Let aj the jth element on the diagonal of A, ν is the Skew-t degrees of freedom and f̄0 =

[m̄0, δ̄0, γ̄0] collects the initial values of the time-varying parameters. Our prior specifications for
these parameters are as follows: an inverse Gamma prior aj ∼ IG(aκ, bκ) for each element in the
diagonal matrix A, a truncated Gamma prior ν ∼ G(dν , Dν) · I(ν≥3) for the degrees of freedom, and
a multivariate Gaussian f̄0 ∼ N (m0,M0) for the initial values of the time-varying parameters. The
inverse Gamma prior for the score loadings is in line with the properties of the score-driven filters
(for further discussion, see Juárez and Steel, 2010; Blasques et al., 2015). We set aκ = 3, and bκ = 1,
so that a priori the loadings in A are positive, with a mode of 0.25. This corresponds to a quite
uninformative prior centred on the possibility of a smooth update of the time-varying moments in
Eq. (2).

The hyper-parameters for the Gamma prior on the degrees of freedom ν reflect a rather uninfor-
mative view on the parameters, with dν = 3 and Dν = 5. These values allow to explore a wide range
of feasible values for ν with a mode at 8 (see, e.g., Juárez and Steel, 2010).21 The initial values of
the time-varying parameters are drawn from a multivariate Gaussian distribution, with mean vector
m0, and M0, both calibrated over an initial training period of one year of daily returns. A small
time variation embedded into the prior of the latent states is a prerequisite for the optimality of the
score-driven updating (see, Blasques et al., 2014).

The posterior distribution is not available in closed form and is numerically evaluated based
on draws from the priors and the conditional likelihood in Eq. (B7). Specifically, for each draw
θi =

(
Ai, νi, f i

0

)
∼ π (θ) for i = 1, . . . ,M , we simulate the time-varying parameters

{
f i
t |θi, f i

0

}T
t=0

,
and evaluate the log-likelihood ℓ(r|θi) =

∑T
t=1 ℓt(rt|θi, f i

t ), such that the parameters of the model
are estimated as θ∗ = argmaxθ ℓ(r|θ); that is, by optimizing the conditional likelihood given the
prior hyper-parameters.

C Moments of the skew-t distribution

In this Section, we provide derivations for the moment of the Skew-t; for further details see (De Polis,
2023, Chapter 5). In what follow, to simplify the notation, we drop the time subscript from the

21In order to ensure the existence of at least the first three moments, we assume ν > 3.
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time-varying parameters. Consider the Skew-t distribution proposed by Gómez et al. (2007):

p(y|m, σ, ρ, ν) = C
σ

[
1 +

1

ν

(
y − m

σ(1 + sgn(y − m)ρ)

)2
]− 1+ν

2

, (C8)

where C =
Γ( ν+1

2 )
√
νπΓ( ν

2 )
. Arellano-Valle et al. (2005) shows that any symmetric density on R can be

uniquely determined from a density on R+, and a Skew − t distribution can then be expressed in
terms of strictly positive densities. Specifically, we can re-parametrize the density in Eq. (C8) as a
two-piece distribution (Fernández and Steel, 1998):

p(y|m, σ, ρ, ν) =


C
σ

[
1 + 1

ν

(
y−m
σ+

)2]− 1+ν
2

, y ≥ m

C
σ

[
1 + 1

ν

(
y−m
σ−

)2]− 1+ν
2

, y < m
(C9)

where σ+ = (1+ ρ)σ and σ− = (1− ρ)σ are the scale parameters of the two Half-t densities on each
side

P (y ≥ m) =
σ+

σ+ + σ−
=

1 + ρ

2
, P (y < m) =

σ−
σ+ + σ−

=
1− ρ

2
. (C10)

The two-piece formulation allows to consider separately the two half of the distribution when
taking expectations: for y = m+σζ, where ζ ∼ Sktν(0, 1, ρ), the moments of y are weighted averages
of the moments of |ζ|, where |ζ| ∼ Htν , is an Half-t distribution (see, e.g., Gómez et al., 2007).22

Specifically, the r-th moment of ζ is defined as:

E[ζr] = µ̂r =
1

2

[
(1 + ρ)r+1 + (−1)r(1− ρ)r+1

]
dr(ν), (C11)

where dr(ν) =
∫∞
−∞ |ζ|rp(ζ)dζ < ∞ is the rth moment of the Half-t distribution (Johnson et al.,

1995). Starting from Eq. (C11), the moments of y are then computed as:

E[yj ] =
j∑

k=0

(
j

k

)
σkmj−kµ̂k.

22Notice that the Half-t distribution is a special case of the folded-f distribution (Psarakis and Panaretoes, 1990).
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Therefore, the expected value y is given by:

E[y] = m + µ̂1σ

= m +
4νC(ν)
ν − 1

ρσ, ν > 1 (C12)

the variance is calculated as:

E[y2] = m2 + 2mσµ̂1 + σ2µ̂2

= m2 + 2mσ
4νC(ν)
ν − 1

ρ+ σ2 (1 + 3ρ2)ν

ν − 2
, ν > 2 (C13)

V ar(y) = E[y2]− E[y]

= m2 + 2mσ
4νC(ν)
ν − 1

ρ+ σ2 (1 + 3ρ2)ν

ν − 2
−
(

m +
4νC(ν)
ν − 1

ρσ

)2

= σ2

(
(1 + 3ρ2)ν

ν − 2
−
(
4νC(ν)
ν − 1

ρ

)2
)

= σ2

[
ν

ν − 2
+

(
3

ν − 2
−
(
4νC(ν)
ν − 1

)2
)
ρ2

]
, ν > 2 (C14)

and the skewness is defined as:

Skew(Y ) = V ar(y)−
3
2 E[y3]

=
g(ν)ρ

[
ρ2
(
(5− 2g(ν)2)ν2 + (10g(ν)2 − 19)ν − 12g(ν)2

)
− ν(ν + 1)

]
(ν − 3)(ν − 2)

(
ν

ν−2 + h(ν)ρ2
) 3

2

, ν > 3, (C15)

with g(ν) = 4C(ν)ν
ν−1 and h(ν) = 3

ν−2 − g(ν)2.

D Bootstrap testing procedure

Consider the return on two strategies a and b, ra,t and rb,t respectively, in excess of some benchmark
return. We observe a strictly stationary bivariate return distribution, rt = [ra,t, rb,t]

′, for which T

observations are available. Assume now that for each return series we wand to evaluate an almost
everywhere differentiable function g(θ), such that ∇ = ∂g(θ)

∂θ′ ̸= 0, ∀θ (θ ∈ Θ ∧ θ /∈ Θ). We now
want to draw inference on g(θ) in order to compare the performance of the return series. Define
d(θ) = ga(θa)−gb(θb), such that θ = [θa, θb]

′, and let θ̂ be the estimator of θ, such that under (mild)
regularity conditions √

T (θ̂ − θ)
d→ N (0,Ψ) ,
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where Ψ is a symmetric, positive semi-definite covariance matrix. By the Delta method,

√
T (d(θ̂)− d(θ))

d→ N
(
0,∇Ψ∇′) .

Given Ψ̂, a consistent estimator of Ψ (see, e.g., Andrews and Monahan, 1992; Newey and West,
1994), the standard error for d(θ̂) is given by

s(d̂) =

√
∇Ψ̂∇′

T
.

Consider now resampling pairs of return series r∗r = [r∗a,t, r
∗
b,t] using a (circular) block bootstrap

method, with block size b and l = ⌊T/b⌋. As it is generally, θ contains sample moments;23 hence,
we can define y∗t , a set of moment conditions of the form y

∗(n)
j,t = r∗j,t− θ

∗(n)
j , where (n) indicates the

nth element of θj , j = a, b. Therefore,

Ψ̂ =
1

l

l∑
k=0

ζkζ
′
k, (D1)

where ζk = 1√
b

∑b
t=1 y

∗
(k−1)b+t.

D.1 Performance measures

We first consider the benchmark performance measure, the Sharpe ratio, as an instructive case. For
this measure, our results are those of Ledoit and Wolf (2008). We then consider several measures fit
to measure the exposure of a portfolio to downside risks. Specifically, we consider the Sortino ratio
(Sortino and Van Der Meer, 1991; Satchell, 2001), the Value-at-risk, the Expected Shortfall, the
Stable Tail Adjusted Return Ratio (STARR) and the Rachev ratio (Fabozzi et al., 2005). In what
follows we lay down the performance measure, the gradient and the moment conditions necessary
to derive the covariance matrix of d(θ), as in Eq. (D1).

Sharpe Ratio. Give a time series of returns, the Sharpe ratio is defines as the ratio between
the sample average and the sample standard deviation. Let d(θ) = µa√

γ2
a−µ2

a

− µb√
γ2
b−µ2

b

, where

µj =
1
T

∑T
t=0 rj,t, γ2j = 1

T

∑T
t=0 r

2
j,t, and θ = [µa µb γ

2 γ2]′, so that

∇ =

[
γ2a

(γ2a − µ2
a)

3/2
, −

γ2b
(γ2b − µ2

b)
3/2

, −1
2

µa

(γ2a − µ2
a)

3/2
, 1

2

µb

(γ2b − µ2
b)

3/2

]
.

23Consider the Sharpe ratio: g(θ) = µ√
(γ−µ2)

, then θ = [µ γ], where µ = 1
T

∑
t

rt and γ = 1
T

∑
t

r2t .
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Define µ∗
j = 1

T

∑T
t=0 r

∗
j,t and γ∗2j = 1

T

∑T
t=0 r

∗2
j,t the bootstrapped first and second moment of

(r∗a,t, r
∗
b,t), and define y∗t = [r∗a,t − µ∗

a, r∗b,t − µ∗
b , r∗2a,t − γ∗2a , r∗2b,t − γ∗2b ]′.

Sortino Ratio. The Sortino ratio of Sortino and Van Der Meer (1991) is the ratio of the average
return in excess of some pre-specified threshold m, the so called minimum accepted return, and a
measure of downside volatility, ς. Define δ(rj,t,m) = min(rj,t,m)2 and ςj = 1

T

∑T
t=0 δ(rj,t,m), and

let d(θ) = µa√
ςa

− µb√
ςb

, where µj =
1
T

∑T
t=0 h(rj,t,m) with h(rj,t,m) = rj,t −m, and θ = [µa µb ςa ςb]

′,
so that

∇ =

[
1

ςa
, − 1

ςb
, − µa

ς
3/2
a

,
µb

ς
3/2
b

]
.

Define µ∗
j =

1
T

∑T
t=0 h(r

∗
j,t,m) and ς∗j = 1

T

∑T
t=0 δ(r

∗
j,t,m) the bootstrapped mean in excess of m and

second partial-moment of (r∗a,t, r∗b,t), and define

y∗t = [h(r∗a,t,m)− µ∗
a, h(r∗b,t,m)− µ∗

b ,
√

δ(r∗a,t,m)− ς∗a ,
√

δ(r∗b,t,m)− ς∗b ]
′.

Value-at-Risk. Define the α-level Value at Risk (VaR), vαt as

vαj,t ≡ inf{x ∈ R/P (rj,t ≤ x) ≥ α}, (D2)

and let d(θ) = vαa,t − vαb,t, where θ = [vαa,t, vαb,t]
′ and ∇ = [1, −1]. Consider the Hit loss function,

g(rj,t, v
α
j,t) = I(rj,t < vαj,t)−α; when the VaR is correctly specified, that is when vαj,t is the α−quantile

of the (un-)conditional distribution of the data, we can express it as the following moment condition

E[g(rj,t, vαj,t)rj,t] = 0,

in that E
[
I(rj,t < vαj,t)

]
= P

(
rj,t ≤ vαj,t

)
= α by Eq. (D2). Hence,

y∗t = [g(r∗a,t, v
α
a,t), g(r∗b,t, v

α
b,t)]

′.

Expected shortfall & Value-at-Risk. The Basel III accord (Basel Committee on Banking
Supervision, 2010) has shifted the focus from the VaR to the Expected shortfall (eαt , ES), defined
as the expected return on an asset, conditional on the return being below its VaR,

eαj,t =
1

α

∫ α

0
vsj,tds.

The pitfall of this measure is, however, its lack of elicitability, that is the ES is not the minimizer of
the expectation of any loss function, which makes the definition of a suitable moment condition a
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difficult task.24 Fissler and Ziegel (2016) show that the VaR and the ES are jointly elicitable, that
is

(V aRα
t , ESα

t ) = arg min
(vαt ,e

α
t )
Et−1 L

FZ
t ,

where LFZ
t = − I(r≤vαt )

eαt
(vαt − rt)+

vαt
eαt

+log (−eαt )− 1, where I is an indicator function; then the loss
function differential is

d(θ) = − 1

αeαa,t
I(ra,t ≤ vαa,t)(v

α
a,t − ra,t) +

1

αeαb,t
I(rb,t ≤ vαb,t)(v

α
b,t − rb,t) +

vαa,t
eαa,t

−
vαb,t
eαb,t

+ log

(
eαa,t
eαb,t

)
,

with θ =
[
vαa,t, vαb,t, eαa,t, eαb,t

]′
. Following Patton et al. (2019), for rj,t ̸= vαj,t :

∇ =

[
λv
a,t

αeαa,tv
α
a,t

, −
λv
b,t

αeαb,tv
α
b,t

, −
λv
a,t + αλe

a,t

α(eαa,t)
2

,
λv
b,t + αλe

b,t

α(eαb,t)
2

]

with λv
j,t = −vαj,t

(
I(rj,t ≤ vαj,t)− vαj,t

)
and λe

j,t =
1
αI(rj,t ≤ vαj,t)rj,t − eαj,t. Hence,

y∗t =

[
−
λv
a,t

vαa,t
, −

λv
b,t

vαb,t
, λe

a,t, λe
b,t

]′
.

Stable Tail Adjusted Return Ratio. The STARR replaces the denominator of the Sharpe
Ratio with a coherent measure of risk, e.g., the ES. Given all the above, define

d(θ) =
µa

eαa,t
− µb

eαb,t

with θ =
[
µa, µb, eαa,t, eαb,t

]′
, and

∇ =

[
1

eαa,t
, − 1

eαb,t
, − µa

(eαa,t)
2
,

µb

(eαb,t)
2

]
.

Now, define
y∗t = [r∗a,t − µ∗

a, r∗b,t − µ∗
b , λe

a,t, λe
b,t]

′.

24For example, the VaR is elicitable by means of the tick loss function; the mean and the median by mean of
quadratic and absolute loss functions, respectively.
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Rachev Ratio. Define the (1− α)-level Expected Longrise (e(1−αt), ES) as

e
(1−α)
j,t =

1

1− α

∫ 1−α

0
vsj,tds,

and consider

d(θ) =
e
(1−α)
a,t

eαa,t
−

e
(1−α)
a,t

eαb,t

with θ =
[
e
(1−α)
a,t , e

(1−α)
b,t , eαa,t, eαb,t

]′
, and

∇ =

 1

eαa,t
, − 1

eαb,t
, −

e
(1−α)
a,t

(eαa,t)
2
,

e
(1−α)
b,t

(eαb,t)
2

 .

Now, define
y∗t = [λ̃e

a,t, λ̃e
b,t, λe

a,t, λe
b,t]

′;

where λ̃e
a,t =

1
1−αI(rj,t ≤ v

(1−α)
j,t )rj,t − e

(1−α)
j,t .

D.2 Simulation study

In this Section we report results for the asymptotic properties of the test derived above. We consider
two different sizes for the simulated history of returns, T = 2500 and T = 5000. We report the
empirical rejection probabilities (erp) for all the loss functions at the α = 1, 5, 10% for N = 2000

replications and M = 500 bootstrap replication of the data. We consider three different data
generating processes (DGPs): i) Normal iid returns with unit mean and variance, ii) heavy-tailed
returns with unit mean and variance, for which a Student-t distribution with 5 degrees of freedom
is employed, and iii) bivariate t-GARCH(1,1) simulated from a diagonal BEKK model of Engle and
Kroner (1995). All returns are simulated with unit mean and variances.

Choice of the block size. Give a set of reasonable block sizes, we select the one that minimizes
the difference between the empirical rejection probability and a specified acceptance level, generally
set a 5%. The procedure is akin to the one of Ledoit and Wolf (2008), who target coverage levels.
We first pre-whiten the data by fitting a parametric linear model to the data, e.g. a VAR(1), and
we bootstrap the residuals by means of Politis and Romano (1994) stationary bootstrap in order to
remove any non-linear dependence not captured by the linear model. We then generate K = 2000

pseudo-samples from the VAR(1) estimates and the bootstrapped residuals to compute the empirical
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rejection probability (or empirical p-value) as

erp =
1 +

∑
m∈M I(p̂m ≥ p̄)

1 +M
,

where p̂m is the p-value for the mth sample, p̄ is the p-value for the original data and I is an indicator
function. The size properties of the tests are reported in Table D1. Overall, all tests seem to present
adequate sizes, with the exception of the VaRs and ESs appear to be slightly oversized.

Table D1: Calibration of the bootstrap block size

T 2500 5000
10% 5% 1% 10% 5% 1%

Gaussian-iid
Sharpe 0.100 0.052 0.010 0.081 0.038 0.008
Sortino 0.098 0.056 0.009 0.092 0.039 0.008
VaR(5%) 0.086 0.045 0.008 0.098 0.042 0.011
ES(5%) 0.084 0.042 0.008 0.101 0.051 0.012
ES(5%) 0.093 0.044 0.012 0.101 0.051 0.012
Rachev 0.102 0.051 0.006 0.085 0.037 0.006
STARR 0.104 0.052 0.011 0.087 0.038 0.006

t5-iid
Sharpe 0.086 0.043 0.007 0.100 0.049 0.006
Sortino 0.083 0.041 0.007 0.097 0.052 0.011
VaR(5%) 0.097 0.042 0.009 0.126 0.065 0.016
ES(5%) 0.120 0.054 0.012 0.153 0.094 0.028
ES(5%) 0.118 0.055 0.013 0.148 0.089 0.029
Rachev 0.096 0.047 0.010 0.114 0.063 0.013
STARR 0.086 0.046 0.007 0.098 0.047 0.006

Bivariate t5-GARCH
Sharpe 0.092 0.037 0.006 0.107 0.053 0.012
Sortino 0.091 0.039 0.004 0.105 0.047 0.010
VaR(5%) 0.143 0.083 0.016 0.169 0.097 0.029
ES(5%) 0.130 0.056 0.012 0.143 0.071 0.019
ES(5%) 0.141 0.068 0.019 0.135 0.072 0.014
Rachev 0.092 0.042 0.008 0.104 0.045 0.009
STARR 0.097 0.046 0.008 0.096 0.044 0.008
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E Additional Results

In this section, we report a set of additional results related to the dynamics of the conditional volatil-
ity and skewness estimates for alternative momentum strategies, as well as additional robustness
checks for the portfolio implementation outlined in Section 5.

E.1 Conditional estimates for alternative momentum factors

Figure E1 presents the estimates of the conditional volatility
√
Vt(rt+1) and skewness Skt(rt+1)

for the short-term momentum 6_2 and intermediate momentum 12_7 strategies. The dynamics
of the conditional volatility and skewness for the 12_7 and 6_2 momentum portfolios are broadly
consistent with the benchmark 12_2 implementation (see Figure 5 in the main text). For instance,
both the short and intermediate momentum experience spikes in returns volatility during the great
depression which coincide with deepening negative conditional skewness.

Again, similar to the 12_2 portfolio, conditional skewness tend to deteriorates during economic
recessions while becomes zero, in fact at times positive, during economic expansions, especially if
upturn in economic activity are for prolonged periods. Overall, except for few nuances, the dynamics
of both volatility and skewness is rather consistent across different momentum portfolios.

E.2 Time-series estimates of the location parameter mt

The location parameter mt captures the centre of the distribution and is equivalent to the conditional
mean only under symmetric distributional assumptions – when the returns’ asymmetry ρt = 0 as
from Eq. (4). Figure Fig. E3 reports the estimates of mt for 12_2 momentum portfolio. The estimates
for the 12_7 and 6_2 momentum portfolios are similar (see the dynamics of conditional skewness in
Figure E1) and are available upon request. Two things emerge: first, the dynamics of the location
parameter mt (red line) is much more stable than the conditional mean Et(rt+1). This implies that
the majority of the variation in the dynamics of expected returns is primarily driven by the interplay
between conditional volatility and skewness (see Figure 8(a)).

Second, there is a major disconnect between mt and the conditional mean Et(rt+1) (black line).
This is particularly pronounced during the momentum crashes of 1932-1939 and 2008-2009. For
instance, while the expected returns from the WML portfolio become largely negative in the aftermath
of the great depression and the great financial crisis, the location mt remains persistently in positive
territory for both periods.25

25Recall that for a given σt, the disconnect Et(rt+1) < mt implies that ρt < 0 (see Eq. (4)).
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Figure E1: Conditional estimates for short-term and intermediate momentum
The plot reports the time-varying volatility (left) and skewness (right) estimates for the 12_7 and 6_2 WML portfolio
returns. The red dashed lines represent the sample mean, whereas green lines highlight 2-year moving averages of
the daily estimates. NBER recession are identified by gray shaded areas, while red shaded areas highlight momentum
crashes periods, as indicated in Daniel and Moskowitz (2016). The sample period is from January 1st 1927 to December
31th 2020.

(a) 12_7 Volatility (b) 12_7 Skewness

(c) 6_2 Volatility (d) 6_2 Skewness

E.3 Additional portfolio results for monthly rebalancing

Table 8 reports the results for the monthly rebalancing for the 12_2 benchmark momentum imple-
mentation. In Table E1, we report additional monthly performances for the short-term 6_2 and
intermediate 12_7 momentum portfolios (see Section 2 for a description). Similar to the daily re-
sults, the monthly performance across different momentum implementations is fairly comparable to
the benchmark 12_2 momentum portfolio.
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Figure E2: Conditional estimates for momentum based on NYSE breakpoints
The left panel reports the skewness estimates for the 12_2 strategy implemented based on the NYSE breakpoints as
in Fama and French (1996). NBER recession are identified by gray shaded areas, while red shaded areas highlight
momentum crashes periods, as indicated in Daniel and Moskowitz (2016). The right panel report the correlation
between the estimate in the main text and the estimates based on the NYSE breakpoints. The sample period is from
January 1st 1927 to December 31st 2020.
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This is due to a fairly similar dynamics in the conditional skewness and volatility, which, except
for few nuances during the 2001 burst of the dot-com bubble and the crash over the great financial
crisis, are quite comparable across different momentum implementations.

E.4 Risk aversion

In this Section, we repeat the economic evaluation of Table 6 controlling for different levels of risk
aversion. Table E2 reports the performance fees F for risk aversion levels of 2, 7 and 15. These
levels compare agents with a strong risk aversion to investors prone to take on more risks. Overall,
the main results largely hold: considering time-varying skewness when maximising the Sharpe ratio
delivers the highest performance fees across different levels of risk aversion. These results suggest
hedging for predictable variations in the returns skewness is economically meaningful, regardless the
level of risk aversion.

F Auxiliary results for the asset pricing implications

In this section we report a series of estimates of the conditional CAPM specification as in Eq. (11),
both static and dynamic. These estimates are used to implement the simulation study in Section
6 which compares the conditional skewness estimates from our model against a state-dependent
CAPM regression.
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Figure E3: Expected returns and the location parameter
The plot reports the time-varying location parameter mt (red line) and the conditional expected returns as in Equation
(4) (black line). We report the values for the WML portfolio (left panel), the past losers (bottom-right panel) and the
past winners (top-right panel) sub-portfolios. NBER recession are identified by gray shaded areas, while red shaded
areas highlight momentum crashes periods, as indicated in Daniel and Moskowitz (2016). The sample period is from
July 1st 1926 to December 31th 2020, daily.

F.1 State-dependent CAPM estimates

Figure F1 reports the unconditional estimates of the upside and downside market betas for both the
past losers and winners as well as the WML strategy. The left (right) panel reports the estimates
based on daily (monthly) returns. The estimates of the upside, β, and downside, β betas are based
on the following regression:

rit = α+ βimin(rmt , 0) + β
i
max(rmt , 0) + εt, i = losers, winners, WML.

The daily estimates show that the losers’ portfolio is more exposed to upside market risk
(β = 1.36) as compared to downside market risk (β = 1.27), in relative terms compared to the
unconditional market beta (β = 1.31). The opposite holds for the winners’ portfolio (β = 1.09,
β = 1.22, β = 1.16), consistent with the findings in Grundy and Martin (2001). As a result, the
WML strategy has a quite sizable and negative up-market beta (β = −0.27), while the down-market
beta is close to zero (β = −0.04). The magnitude of the spreads in the upside and downside market
betas is even higher at the monthly frequency.
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Figure F1: Static upside vs downside market betas
The figures plot the upside, β, and downside, β, for the losers, winners and WML portfolios give by the following
regression:

rit = α+ βi min(rmt , 0) + β
i
max(rmt , 0) + εt, i = losers, winners, WML.

The sample period is from July 1st 1926 to September 30th 2020. The left (right) panel reports the estimates based
on daily (monthly) returns.

(a) Daily (b) Monthly
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Table E1: Monthly rebalancing for alternative momentum portfolios

The table reports monthly returns on our skewness-adjusted maximum conditional Sharpe ratio strategy (mSSR) against
a variety of alternative managed-momentum portfolios. We consider Daniel and Moskowitz (2016) (DM2016) and
Barroso and Santa-Clara (2015) (BS2015) which are based on aggregating daily recursive estimates of the realised
variance, as well as a semi-volatility targeting as proposed by Wang and Yan (2021) and Hanauer and Windmüller
(2023). We report in parentheses the bootstrapped p-values for all performance measures (see Appendix D). The
out-of-sample period is from January 1930 to December 2020. Panel A reports the results for intermediate momentum
12_7. Panel B reports the results for short-term momentum 6_2.

Panel A: Intermediate momentum 12_7

Strategies Sharpe Sortino STARR RR VaR ES dVol Skew MaxDD Leverage
mSSR 1.004 2.238 2.914 2.340 −0.485 −0.769 8.340 0.411 0.436 0.771

cdVol 1.389
(0.000)

2.942
(0.188)

3.498
(0.000)

1.785
(0.912)

−0.727
(0.000)

−0.886
(0.020)

8.777 0.055 0.301 1.260

DM2016 1.058
(0.523)

1.959
(0.356)

2.544
(0.551)

1.784
(0.495)

−0.609
(0.081)

−0.928
(0.129)

10.041 0.240 0.541 1.095

BS2015 1.061
(0.534)

1.835
(0.218)

2.181
(0.504)

1.386
(0.306)

−0.780
(0.001)

−1.085
(0.106)

10.749 0.029 0.611 0.405

WML 0.668
(0.137)

0.904
(0.028)

1.393
(0.057)

1.144
(0.043)

−0.745
(0.016)

−1.071
(0.058)

13.750 −0.029 1.251

Panel B: Short-term momentum 6_2

Strategies Sharpe Sortino STARR RR VaR ES dVol Skew MaxDD Leverage
mSSR 1.015 2.125 2.805 2.256 −0.581 −0.807 8.879 0.347 0.470 0.710

cdVol 1.266
(0.013)

2.484
(0.336)

2.831
(0.008)

1.506
(0.522)

−0.784
(0.006)

−0.998
(0.376)

9.475 0.031 0.824 1.104

DM2016 1.113
(0.329)

2.147
(0.948)

2.417
(0.575)

1.668
(0.715)

−0.728
(0.050)

−1.027
(0.182)

9.635 0.226 0.318 0.841

BS2015 0.964
(0.613)

1.580
(0.103)

1.816
(0.666)

1.154
(0.138)

−0.913
(0.000)

−1.184
(0.069)

11.343 −0.063 1.046 0.365

WML 0.494
(0.008)

0.651
(0.008)

0.844
(0.003)

0.859
(0.012)

−0.852
(0.032)

−1.305
(0.044)

14.110 −0.163 2.117

Time-varying market betas. We follow Ang et al. (2006), and calculate the downside market
beta over time for the losers, winners portfolios and the WML at different points in time based on
a time-varying CAPM with asymmetric betas as follows,

βi
t
=

covt(r̃
i
t+1,min{m̃t+1, 0})

vart(min{m̃t+1, 0})
i = losers, winners, WML, (F1)

where r̃it and m̃t are the demeaned returns for the momentum strategy and the demeaned excess
market returns, respectively (see, e.g., Hogan and Warren, 1974). The denominator of Eq. (F1) cap-
tures the variance of the downside market excess returns, and is generally referred to as the relative
semi-variance. Therefore, high downside betas imply that return is significantly exposed to market’s
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Table E2: The role of risk aversion

The table reports the performance fees, F , relative to the managed portfolios for different values of risk aversion. We
consider δ = 1, 7, 15. The fees are computed with respect to the plain WML strategy. All the measures are reported
in annual basis points. The first column reports the level of transaction costs, expressed in basis points (bps). The
sample period is from January 1nd 1927 to December 31th 2020, daily. Portfolio weights are generated in real-time
by recursive forecasts of the conditional mean and variance of the returns based on the model parameters.

mSSR cdVol DM2016 BS2015

c (bps) δ = 2 δ = 7 δ = 15 δ = 2 δ = 7 δ = 15 δ = 2 δ = 7 δ = 15 δ = 2 δ = 7 δ = 15

0 12.234 9.586 5.171 9.838 7.189 2.775 8.829 6.180 1.766 6.937 4.162 0.000
1 11.856 9.081 4.793 9.586 6.937 2.523 8.829 6.054 1.766 6.937 4.162 0.000
5 10.090 7.441 3.027 8.829 6.180 1.766 8.703 5.928 1.640 6.811 4.162 0.000
10 7.946 5.297 0.883 7.820 5.171 0.757 8.450 5.802 1.387 6.811 4.162 0.000

downswings. Upside betas β
i
t hold a similar interpretation and are computed by substituting the

min function in Eq. (F1) with the max operator.

Figure F2 reports the estimates for the spread Bt = β
WML

t − βWML
t

for the periods indicated as
momentum crashes by Daniel and Moskowitz (2016).26 To estimate the time-varying downside
and upside betas for the momentum strategy returns, we follow Bali and Engle (2010); Tsai et al.
(2014) and implement a dynamic conditional correlation (DCC) model as originally proposed by
Engle (2002). For the easy of exposition we report both the daily DCC estimates of Bt as well as
a smoothed version of the estimates based on a quarterly moving average of the daily estimates.
Recessions are highlighted in gray where momentum crashes are color-coded in red shading. Except
few nuances, the spread Bt is primarily negative during the momentum crash of the 30’s (left
panel). The difference between upside and downside betas tend to spike in 1935 and 1938, although
remains persistently large and negative for the entire decade. The momentum crash of the 2001/2002
(right panel) shows a slightly different dynamics, with Bt > 0 during the dot-com bubble collapse,
which then switch negative towards the tail of the recession. The momentum crash during the great
financial crisis of 2008/2009 is characterised by a large negative spread between upside and downside
betas for the WML portfolio returns. The Bt difference is persistently negative and is as large as -2.5.

G State-dependent betas and returns asymmetry

In this section we provide some simple intuition on how a state-dependent CAPM with asymmetric
market betas can generate asymmetry in the marginal distribution of returns. Let consider the

26For the ease of exposition, the estimates for both the losers and the winners portfolios are not reported in the
main text. They are available upon request to the authors.
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Figure F2: Momentum crashes and the exposure to downside and upside risk
The plots report the spread between the upside and downside betas, Bt. The left panel span the 1927-1940 period,
while the right panel cover from 2000 to 2020. Gray shaded bands highlight NBER recession. Red shaded bands
indicate momentum crash periods, as indicated in Daniel and Moskowitz (2016).

(a) 1927-1940 period (b) 2000-2020 period

conditional regression model in Eq.(10),

rt = α+ βmtI(mt ≥ µm) + βmtI(mt < µm)︸ ︷︷ ︸
βmt

+et (G1)

with mt ∼ N
(
µm, σ2

m

)
the normal distributed market portfolio and I(mt ≥ µm) (I(mt < µm)) an

indicator function that takes value one if the market returns are above (below) the mean µm and zero
otherwise. Theoretically, Ang et al. (2006) show that this upside vs downside CAPM formulation
can be rationalised based on a disappointment aversion utility function that embeds downside risk
following Gul (1991). The distribution of βmt conditional on the indicator I(·) can be defined as a
split-Normal (or two-piece Normal) distribution of the form (see Johnson et al., 1995; del Castillo
and Daoudi, 2009),

f (βmt) =

{
C exp

{
− 1

2σ2
m

(
βmt − βµm

)2} if mt ≤ µm

C exp
{
− 1

2σ2
m

(
βmt − βµm

)2} if mt > µm

(G2)
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with C =
√

2
π (σm + σm)−1 and σ2

m = β2σ2
m and σ2

m = β
2
σ2
m. Following Wallis (2014), the expected

value of the distribution takes the form

E [βmt] =

√
2

π
(σm − σm) + βµm, (G3)

Notice that for β = β = β, then we have σ2
m = σ2

m = σ2
m, such that E [βmt] = βµm. That is,

the mean and the mode of the conditional distribution of the momentum returns coincide, i.e.,
E [rt] = α+ βµm. Similarly, the variance of the split-Normal in Eq.(G2) takes the form ,

V [βmt] =

(
1− 2

π

)(
σ2
m − σ2

m

)2
+ σmσm (G4)

such that for no asymmetry in the betas estimates the first component
(
1− 2

π

) (
σ2
m − σ2

m

)2
= 0,

and we are left with V [βmt] =
√
β2σ2

m

√
β2σ2

m = β2σ2
m. As a result, for β = β = β, and given

et ∼ N(0, σ2
e), we obtain that the marginal distribution of the momentum strategy returns is rt ∼

N
(
α+ βµm, β2σ2

m + σ2
e

)
. Now let us assume that β ̸= β, and indicator of the asymmetry of the

returns distribution can be defined as the difference between the expected value E [βmt] and the
mode βµm, which is given by

E [βmt]− βµm =

√
2

π
(σm − σm) ∝

√
β
2
σ2
m −

√
β2σ2

m,

= σm

(√
β
2 −

√
β2

)
= σm

(
β − β

)
(G5)

that is, for β = β there is no returns asymmetry, whereas for β < β (β > β) the expected value is
lower (higher) than the mode, that is the marginal distribution of the returns is negatively (posi-
tively) skewed.
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