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Abstract

I develop a parametric test to detect the presence of instability in the third moment of time
series data. The test is based on the score function of the flexible epsilon-Skew-t distribution,
and belongs to the class of Lagrange Multiplier tests. The test presents appropriate asymptotic
properties, as evaluated by means of an extensive Monte Carlo analysis. When applied to the
three asset pricing anomalies of Fama and French (1993), the test points at an overwelimg
evidence of con- ditional non-Gaussianity at the daily frequency, whereas weaker results are
observed at the monthly frequency. These results should be taken as a warning of possible
misspecification of asset pricing models based on symmetric likelihoods.

1 Introduction

Motivated by are renewed interest in Skewed-Student-t distributions, in this paper we derive

the properties of the Epsilon-Skew-t distribution of Arellano-Valle et al. (2005) and Gómez et al.

(2007).1 Specifically, we derive a closed form solution for the coefficient of skewness, defined as the

rescaled third central moment, and we provide a novel proof of the unbiasedness of the distribution’s

score vector and its Fisher Information matrix.

There is a long standing tradition in the modeling of higher-order moments in modern financial

econometrics and risk management literatures. Models for the conditional distribution of financial

returns are commonly estimated assuming Student-t innovations, which allow statistical models to

capture and exploit the occurrence of extreme observations. Bollerslev (1987) introduced heavy

tails in the GARCH setting for conditional heteroskedasticity. More recently, Hansen (1994) and
∗I would like to thank Ivan Petrella for extensive discussions about this paper.
†University of Strathclyde and Economic Statistics Centre of Excellence. andrea.de-polis@strath.ac.uk

1The Epsilon in the name of the distribution derives from the fact that Mudholkar and Hutson (2000) first, and
Gómez et al. (2007) then, denote the asymmetry parameter by ε.
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Harvey and Siddique (1999) have introduced filters to model the time variation in the skewness

of financial returns. Theodossiou (1998), Komunjer (2007) and Zhu and Galbraith (2010) are

among the recent contributions that proposed novel distributions to accommodate the modeling

of higher-order moments for risk management purposes. There is also a long-standing interest for

the modelling of asymmetry in the macroeconomic literature date back to the contributions of

Neftci (1984) or Hamilton (1989). Recently, Adrian et al. (2019) have renewed the interest for the

reduced-form modelling of the asymmetry in the residual distribution of macroeconomic shocks.

Nevertheless, the presence of time-varying skewness in financial returns has been at best eval-

uated empirically, by means of model fit statistics. In this paper we introduce a parametric test

for the presence of autocorrelated skewness in time series data based on the Epsilon-Skew-t dis-

tribution. The test belongs to the class of Lagrange Multiplier (LM) tests and it is aimed at

providing a tool to draw inference on the dynamic properties of the third-order moments of any

sample. Interestingly, we show that when modelling heteroskedasticity assuming the location to

be fixed, the test for time-varying asymmetry reduces to the classic Box and Pierce (1970) test on

the autocorrelation of the conditional score of the asymmetry parameter, estimated under the null

hypothesis.

In an application to financial data, we test the presence of time-varying asymmetry in the

famous Fama and French (1993) three factors. Our test detects strong evidence in favor of daily

time-varying skewness for the anomalies, whereas less striking evidence is observed at the monthly

frequency.

The rest of the paper is as follows: Section 2 provides an overview of different methods to

introduce skewness in symmetric densities, with a focus on the t distribution. Section 3 illustrates

the properties of the Epsilon-Skew-t distribution, providing detailed derivations when appropriate.

In Section 4 we introduce the parametric test for conditional skewness based on the Epsilon-Skew-

t density. Section 5 evaluates the properties of the test. In Section 6 we provide an empirical

application of the test to financial data. Section 7 concludes.

2 The Skew-t distribution

Skew-t distributions can be constructed in different ways (see, e.g., Jones, 2015). Currently, two

methods are the most commonly used: the modulation of the density and the mixture representa-

tion. In what follow, we will introduce these two approaches to skew symmetric distributions, but

we will focus on the latter in the remainder of the paper.
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2.1 Modulation of the density

Azzalini (1985) introduced a simple way to create a family of distributions that i) strictly

includes the Normal distribution and ii) is mathematically tractable, by modulating the Gaussian

distribution. More generally, let f(y) be symmetric about 0, that is f(y) = f(−y), ∀y ∈ R, G(·)

be a symmetric (about 0) distribution function, e.g., F (−y) = 1 − F (y), and w(·) a real valued,

odd function such that w(−y) = −w(y); then

p(y) = 2f(y)F (w(y)) (1)

is an admissible density function, such that
∫
R p(y)dy = 1 and p(y) > 0, ∀y ∈ R (see Azzalini,

2013, for further detils). Let tν be a symmetric Student-t distribution with zero location, unit scale

and ν degrees of freedom (Johnson et al., 1995), with distribution function Fν . By Equation (1),

y ∼ Sktν(0, 1, α) with density

p(y) = 2tν(y)Fν+1

(
α

√
ν + 1

ν + y2
y

)

is a Skew-t distribution with ν degrees of freedom, asymmetry parameter α and w(y) =
(
α
√

ν+1
ν+y2

y
)
,

as in Azzalini and Capitanio (2003). Limiting cases for p(y) encompass the symmetric Student-t for

α = 0, Skew-Normal of Azzalini (1985), Skw−N , for ν approaching ∞, and the standard Normal

when both restrictions apply. The distribution also admits a stochastic representation of the form

Y = X√
V

, with X ∼ Skw−N and V ∼ χ2
ν

ν
.

Di Ciccio and Monti (2011) work out the score function and the Fisher Information matrix for

this type of Skew-t distributions, highlighting inferential issues related to the singularity of the

Information quantity when ν → ∞ and α = 0.

2.2 Mixture representation

Arellano-Valle et al. (2005) generalize the family of skewed distributions built by joining two half-

distributions. Consider a(ϱ) and b(ϱ), two positive asymmetry functions of a common asymmetry

parameter ϱ ∈ R, and let Uϱ be a discrete random variable defined over the support [−b(ϱ), a(ϱ)],

with P(Uϱ = a(ϱ)) = a(ϱ)
a(ϱ)+b(ϱ)

and P(Uϱ = −b(ϱ)) = 1 − P(Uϱ = a(ϱ)). Define V ∼ 2f(y){y ≥ 0}

be a generic half-distribution created by truncating the symmetric density f(y) around y = 0,

independent of Uϱ.2 Then, Y ∼ Skew−f = UϱV .

When f is the density function of a Student-t with ν degrees of freedom, y ∼ Sktν(µ, σ, ϱ) is a
2Alternatively, we can define V ∼ |Y |.
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Skew-t random variable with density function of the form:

p(y|µ, σ, ϱ, ν) = 2

σ(a(ϱ) + b(ϱ))

[
tν

(
y − µ

σa(ϱ)

)
I{y ≥ µ}+ tν

(
y − µ

σb(ϱ)

)
I{y < µ}

]
, (2)

with location parameter µ, scale σ, and ϱ being the parameter regulating the asymmetry of the

distribution with respect to the mode. As for the density in Section 2.1, this distribution collapses

to the symmetric, lcation-scale Student-t with ν degrees of freedom for a(ϱ) = b(ϱ), to a version of

the Skw−N for ν → ∞, and to a N (µ, σ) when both conditions hold.

The generality of this approach allows to generate skewd densities from a vast family of distri-

butions (see, e.g., Arellano-Valle et al., 2005, and referneces therein), and to generate asymmetry

in several ways, via the functions a(·) and b(·). For example, by setting a(ϱ) = ϱ and b(ϱ) = ϱ−1 we

retrieve Fernández and Steel (1998) Skew-t distribution. In the following Sections we will focus on

the case when a(ϱ) = 1− ϱ and b(ϱ) = 1 + ϱ, that corresponds to the Epsilon-Skew-t popularized

by Gómez et al. (2007).

3 Epsilon-Skew-t properties

When Y ∼ Sktν(µ, σ, ϱ) and a(ϱ) = 1 + ϱ and b(ϱ) = 1− ϱ, we can rewrite Equation (2) as

p(y|µ, σ, ϱ, ν) = C
σ

[
1 +

1

ν

(
y − µ

σ(1 + sgn(y − µ)ϱ)

)2
]− 1+ν

2

, (3)

where C =
Γ( ν+1

2 )
√
νπΓ( ν

2 )
; see Gómez et al. (2007) for some basic properties of Equation (3).

Denoting with Fν the cumulative distribution function (CDF) of a Student-t, the CDF of Y ,

H(·) reads:

H(y|µ, σ, ϱ) =

(1− ϱ)Fν

(
y−µ
σ(1−ϱ)

)
, y < µ

(1 + ϱ)Fν

(
y−µ
σ(1+ϱ)

)
− ϱ, y ≥ µ,

(4)

such that H(µ) = 1−ϱ
2

.3 Figure 1 illustrate the density function and the distribution function of

Skew-t-variates for different levels of the asymmetry parameter. To recover the quantile function,

we can invert Equation (4) and notice that the threshold for the quantile is expressed as a function

3Notice that this is equivalent to H(0|ϱ) for ỹ = y−µ
σ .
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Figure 1: Density and distribution functions
Note: The panels illustrate the density function (left) and the distribution function (right) for three different Skew-t
distributions for different values of the asymmetry parameter: ϱ = 0, solid, ϱ = −0.3, dash-dotted, ϱ = 0.8, dotted.
In all cases, µ = 0, σ = 1 and ν = 5.

of the shape parameter:

H−1(q|µ, σ, ϱ) =

µ+ σ(1− ϱ)F−1
ν

(
q

1−ϱ

)
, 1−ϱ

2
< q

µ+ σ(1 + ϱ)F−1
ν

(
q+ϱ
1+ϱ

)
, 1−ϱ

2
≥ q,

where F−1
ν is the quantile function of a Student-t.

3.1 Two-piece representation

In order to recover the moments, the score vector and the Information quantity, it is often

convenient to exploit the two-piece representation of Equation (2) (Fernández and Steel, 1998).

Since any symmetric density on R can be uniquely determined from a density on R+, the Skt

distribution can be defined in terms of strictly positive densities (Arellano-Valle et al., 2005), we

can re-parametrize the density in Equation (3) as:

p(y|µ, σ, ϱ, ν) =


C
σ

[
1 + 1

ν

(
y−µ
σ+

)2
]− 1+ν

2

, y ≥ µ

C
σ

[
1 + 1

ν

(
y−µ
σ−

)2
]− 1+ν

2

, y < µ
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where σ+ = (1 + ϱ)σ and σ− = (1 − ϱ)σ are the scale parameters of the two Half-t densities on

each side, and

P (y ≥ µ) =
σ+

σ+ + σ−
=

1 + ϱ

2
, P (y < µ) =

σ−
σ+ + σ−

=
1− ϱ

2
.

3.2 Moments

The two-piece formulation allows to consider separately the two halves of the distribution when

taking expectations: for y = µ + σζ, where ζ ∼ Sktν(0, 1, ϱ), the moments of y are weighted

averages of the moments of |ζ|, where |ζ| ∼ Htν , is an Half-t distribution.4

Half-t moments. Following Kim (2008), let η ∼ IG
(
ν
2
, ν
2

)
and ϕ be the standard Normal prob-

ability density function; then for Lemma 2.2 in Kim (2008):

E[η−
ℓ
2ϕ (

√
ηx)] =

Γ
(
ν−ℓ
2

)
ν

ν
2

2
(ℓ+1)

2 Γ
(
ν
2

)
Γ
(
1
2

)(ν + x2)−
ν−ℓ
2 , ℓ = 1, 2, 3.

Let Z = |ζ| ∼ Htν or, equivalently, Z ∼ Tt(a,b)(ν), a truncated-t distribution with truncation

parameters a = 0 and b = ∞. The moments of the Htν can be obtained as:

E[Zk+2] = Eη[η−
k+2
2 V k+2], k = −1, 0, 1, . . . ,

where

V k+2 = −
(
√
ηb)k+1ϕ(

√
ηb)− (

√
ηa)k+1ϕ(

√
ηa)

Fν(b)− Fν(a)
+ (k + 1)V k.

Proposition 1. The first four moments of a Half-t distribution with ν degrees of freedom are:

E[Z] =
2ν

ν − 1
C(ν)

E[Z2] =
ν

ν − 2

E[Z3] =
4ν2

(ν − 3)(ν − 1)
C(ν)

E[Z4] = 3
ν2

(ν − 4)(ν − 2)
.

Proof. See Section 8. ■
4Notice that the Half-t distribution is a special case of the folded-f distribution (Psarakis and Panaretoes, 1990).
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Moments of ζ ∼ Sktν(0, 1, ϱ). Define dr(ν) = E[Zr], ∀r ∈ Z, then the moments of ζ ∼

Sktν(0, 1, ϱ) are computed from

E[ζr] =
1

2

[
(1 + ϱ)r+1 + (−1)r(1− ϱ)r+1

]
dr(ν), ∀r ∈ Z.

The first three moments read:

µ1 = 2ϱ d1(ν) =
4ν

ν − 1
C(ν)ϱ;

µ2 = (1 + 3ϱ2)d2(ν) = (1 + 3ϱ2)
ν

ν − 2
;

µ3 = 4ϱ(1 + ϱ2)d3(ν) =
16(1 + ϱ2)ν2

(ν − 3)(ν − 1)
C(ν)ϱ;

µ4 = (1 + 10ϱ2 + 5ϱ4)d4(ν) =
3ν2(1 + 10ϱ2 + 5ϱ4)

(ν − 4)(ν − 2)
.

Moments of y ∼ Sktν(µ, σ, ϱ). Finally, to recover the moments of y = µ + σζ we can use the

following aggregation rule:

E[Y r] =
r∑

k=0

(
r

k

)
σkµr−kµk, r = 1, 2, . . . ,

to obtain:

E[Y ] = µ+ g(ν)σϱ,

E[Y 2] = µ2 + 2g(ν)µσϱ+ σ2ν(1 + 3ϱ2)

ν − 2
,

E[Y 3] = µ3 + 3µ2g(ν)σϱ+ 3µ
ν(1 + 3ϱ2)

ν − 2
σ2 + 16

(1 + ϱ2)g(ν)ν

(ν − 3)
σ3ϱ,

E[Y 4] = µ4 + 4µ4g(ν)σϱ+ 6µ2ν(1 + 3ϱ2)

ν − 2
σ2 + 64

(1 + ϱ2)g(ν)ν

(ν − 3)
σ3ϱ+

3ν2(1 + 10ϱ2 + 5ϱ4)

(ν − 4)(ν − 2)
σ4,

with g(ν) = 4C(ν)ν
ν−1

. Hence, the variance reads:

Var(Y ) = σ2

(
ν(1 + 3ϱ2)

ν − 2
+ g(ν)2ϱ2

)
= σ2

(
ν

ν − 2
+ h(ν)ϱ2

)
,

with h(ν) = 3
ν−2

+ g(ν)2. The skewness and kurtosis are:

Skew(Y ) =
µ3 − 3µ2µ1 + 2µ3

1

(µ2 − µ2
1)

3
2

=
g(ν)ϱ [ν(ν + 1)− ϱ2 ((5− 2g(ν)2)ν2 + (10g(ν)2 − 19)ν − 12g(ν)2)]

(ν − 3)(ν − 2)
(

ν
ν−2

+ h(ν)ϱ2
) 3

2

; (5)
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Figure 2: Skewness-Kurtosis bound
Note: The figure reports the skewness-kurtosis bound for the Epsilon-Skew-t distribution with ν > 4. Shaded colors
relate to the level of asymmetry. Dotted lines highlights the bounds for 4.5, 5 and 7 degrees of freedom.

Kurt(Y ) =
µ4 − 4µ1µ3 + 6ν21µ2 − 3µ4

1

(µ2 − µ2
1)

2
.

Figure 2 illustrates the skewness-kurtosis bound for different levels of the asymmetry parameter;

dotted lines highlight the bounds for 4.5, 5 and 7 degress of freedom.

3.3 Score vector

Define ε = y − µ, and denote the positive (negative) “centered” variable as ε+ (ε−), and the

corresponding positive (negative) standardized version as ζ+ = ε+
σ+

(ζ− = ε−
σ−

). Moreover, h =

(1 + sgn(ε)ϱ), with h+ = (1 + ϱ) and h− = (1 − ϱ), thus h+ζ+ = ε+
σ

, and h−ζ− = ε−
σ

. The

log-likelihood function can be expressed as:

ℓ = log p(y|θ) = log C(η)− 1

2
log σ2 − 1 + η

2η
logm(µ, σ, ϱ), (6)

where η = 1
ν
, m(µ, σ, ϱ) =

(
1 + ηζ2

h2

)
and log C(η) = log Γ

(
η+1
2η

)
− log Γ

(
1
2η

)
− 1

2
log

(
1
η

)
− 1

2
log π.

Let us also define w = (1+η)
(1+sgn(ε)ϱ)2+ηζ2

= 1+η
h2+ηζ2

, a set of weights, common to all the gradients,

that downplay the effect of outliers. The following propositions lay out the score vector and its

unbiasedness.
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Proposition 2. The elements of score vector with respect to the parameters of location, squared

scale5 and shape of the Sktν(µ, σ, ϱ) distribution with log-likelihood given by Equation (6) read:

∇µ =
wζ

σ
, ∇σ2 =

(wζ2 − 1)

2σ2
, ∇ϱ =

sgn(ε)wζ2

(1 + sgn(ε)ϱt)
.

Proof. See Section 9. ■

3.4 Fisher’s Information matrix

Proposition 2 highlights that the elements of the gradient vector are functions of the random

variable (wtζ2t ). In order to compute expectations of ∇, it is often convenient to rewrite the gradient

as the sum of the semi-gradients computed over the positive and negative semi-support, ∇+ and

∇− respectively, such that

∇ = ∇+I{y ≥ µ}+∇−I{y < µ}.

Therefor, the two components can be expressed as functions of (wζ2)±=w±ζ
2
±, with w±=

1+η
h2±+ηζ2±

.

Following Harvey (2013), it can be shown that (wζ2)± ∼ B
(

1
2
, 1
2η

)
, where B is the Beta distribution

(Johnson et al., 1995); some notable results that relate the (Skew−)t and Beta distributions are

reported in Section 10.

It is now easy to compute the Information matrix as the expectation of the outer product of

the gradients, I = E[∇∇′].6

Proposition 3. Taking advantage of the two-piece representation,

E[∇∇′] = P (y ≥ µ)E[∇+∇′
+] + P (y < µ)E[∇−∇′

−].

Therefore,

I =


(1+η)

σ2(1+3η)(1−ϱ2) 0 4C(1+η)
σ(1+3η)(1−ϱ2)

0 1
2σ4(1+3η)

0

4C(1+η)
σ(1+3η)(1−ϱ2) 0 3(1+η)

(1+3η)(1−ϱ2)

 .

Proof. See Section 11 ■
5We opt for the squared scale parameter for exposure purposes.
6Notice that Gómez et al. (2007) derive the same expression using the expectation of the negative Hessian matrix.
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4 Testing conditional skewness in heteroskedastic time series

Consider yt ∼ Sktν(µ, σ
2
t , ϱt), that is yt is a realization from a the distribution in Equation (3),

where both the squared scale and the asymmetry parameter are allowed to vary over time; without

loss of generality we keep the location and the degrees of freedom fixed. We assume that σ2
t follows

a first order score-driven process (see Harvey, 2013; Creal et al., 2013)

σ2
t+1 = ωσ + ϕσσ

2
t + κσs

(σ)
t , (7)

where ωσ = δσ
1−ϕσ and st = I−1

t ∇t, such that s ∼ iid (0, I−1).7 We can define

ϱt+1 = ωϱ + κϱ,0st + κϱ,1st−1 + · · ·+ κϱ,P st−P , (8)

for P <∞, and we can verifying that ϱt = ωϱ, ∀0 < t < T testing the following hypotheses:8

H0 :κϱ,0 = κϱ,1 = · · · = κϱ,P ;

H1 :κϱ,i ̸= 0, i = 1, . . . , P,

by means of the Lagrange multiplier (LM) principle (see, e.g., Engle, 1982).

Let us now define θ = [ωϱ ψσ ν]
′, a vector of all the static parameters with ψσ = [ωσ ϕσ κσ]

′,

and κ = [κϱ,0 . . . κϱ,P ]
′. Harvey (2013) and Harvey and Thiele (2016) show that when testing for

H0 in a model where another parameter varies over time, the test statistic takes the form9

ζ̃ϱ(P ) =
1

T
∇κ′I−1

κκ∇κ +
1

T
∇κ′I−1

κκIκθ
(
Iθθ − IθκI−1

κκIκθ
)
IθκI−1

κκ∇κ. (9)

Proposition 4. In a Sktν model with time-varying (squared) scale, the LM test for conditional

skewness reduces to

ξϱ(P ) = T
P∑
j=0

ρ2(j), (10)

the Box and Pierce (1970), where ρ(j) is the jth sample autocorrelation of ∇ϱ.

Proof. See Section 12. ■
7If the innovation distribution is Gaussian (e.g., η → 0, ϱ = 0), Equation (7) reduces to the GARCH(1,1) of

Bollerslev (1986).
8Equation (8) is equivalent to the MA(P ) representation of a covariance stationary (|ϕϱ| < 1) first-order score-

driven model for ϱt.
9See also Calvori et al. (2017).
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Table 1: Size and power of the test

Size Power

ωϱ 10% 5% 1% 10% 5% 1% 10% 5% 1%

BNp DGP1 BNp DGP2 BNp DGP3

T=500 0 0.214 0.116 0.066 0.024 0.178 0.844 0.909 0.962 0.198 0.830 0.890 0.952
-0.3 0.119 0.070 0.024 0.863 0.917 0.963 0.877 0.933 0.975
0.6 0.116 0.067 0.023 0.862 0.912 0.961 0.861 0.920 0.975

T=1000 0 0.219 0.107 0.056 0.020 0.208 0.834 0.896 0.953 0.222 0.851 0.907 0.964
-0.3 0.103 0.058 0.019 0.841 0.903 0.960 0.812 0.889 0.955
0.6 0.115 0.064 0.020 0.840 0.903 0.959 0.864 0.925 0.975

T=2500 0 0.217 0.105 0.058 0.017 0.220 0.757 0.831 0.920 0.223 0.689 0.783 0.898
-0.3 0.105 0.054 0.016 0.756 0.834 0.921 0.784 0.869 0.943
0.6 0.100 0.055 0.016 0.761 0.839 0.925 0.769 0.862 0.951

Note: The table reports the p-values relative to the test in Equation (10) for three DGPs, three values of the
unconditional asymmetry parameter and three sample sizes. The first DGP assumes ϱ = ωϱ, and therefore is used
to evaluate the size of the test. DGP2 and DGP5 assumes a single break and continuous time variation respectively,
and are therefore used to evaluate the power of the test. For the cases in which ωϱ = 0 we also report the p-value
for Bai and Ng (2005) test for unconditional skewness. All values are obtained from 5000 simulations.

The test is distributed as a χ2 with P + 1 degrees of freedom.

5 Monte Carlo evidence

Here, we evaluate the properties of the size and power of the test via Monte Carlo simulations.

Data are generated from a Skt distribution with µ = 0, ν = 5, and scale simulated from an AR(1)

process

σ2
t = ω + φσ2

t−1 + ηt, η ∼ N (0, σ2
η),

with autocorrelation φ = 0.99 and ση = 0.2.

We consider three data generating processes (DGPs) for the asymmetry parameter: i) fix ϱ = ωϱ,

ii) a single break in ϱ with an jump of 0.2, and iii) a time-varying ϱ, simulated from an AR(1)

with an half-line of about 7 periods (ϕϱ = 0.9) and Gaussian innovations with standard deviation

of 0.05. We repeat each GDP for three values of the unconditional asymmetry: ωϱ = 0, 0.3,−0.5,

and T = 500, 1000, 2500 observations. We consider 5000 replication for each combination.

For each replication we estimate the model via Maximum Likelihood techniques; Blasques et al.

(2022) establishes the necessary conditions to ensure the stationarity, ergodicity and invertibility

for the filter in Equation (7).10 The model are estimated under the null hypothesis of no serial
10Conditional on ϱ, the score in Equation (7) reduces to the one considered in Blasques et al. (2022).
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Power with respect to ωϱ Power with respect to ϕϱ

Figure 3: Power of the test
Note: The panels report the power of the test, marked by the color-bar, at the 5% nominal level for combinations
of the (ωϱ, κϱ) and (ϕϱ, κϱ). Results are obtained from 2000 simulations with T=1000.

correlation in skewness, and Equation (10) is used to test the conditional scaled score for the

asymmetry parameter, sϱ,t. We use the automatic selection procedure for the number of lags P

introduced by Escanciano and Lobato (2009). This approach uses an information criterion to

select the optimal number of lags for the Portmanteau test. Asymptotically, only the first lag is

selected, and therefore the test distribution is χ2
1. When appropriate, we also test for the presence

of unconditional skewness in the sample by means of Bai and Ng (2005) test. The results from the

exercise are summarised in Table 1. First, we evaluate the size of the test. The first (left) part of the

Table reports the empirical probability of rejection for DGP1, which assumes constant asymmetry,

for conventional rejection levels. The test appears slightly oversized for T = 500; however, nominal

levels are obtained as T increases. Different levels of the unconditional asymmetry do not affect the

size of the test. When ωϱ = 0, Bai and Ng (2005) test for unconditional skewness fails to reject the

null hypothesis. Second, we analyze the power of the test by means of DGP 2 and 3. These DGPs

represent very different scenarios for ϱ: in DGP 2 the parameter experiences instability only via a

single break, whereas in DGP 3 the asymmetry is generated by a first-order autoregressive process,

implying continuous variation of the parameter. Overall, the test shows reassuring power values for

both DGPs. We further evaluate the power of the test in Figure 3. The panels compare the power

of the test compute at the 5% nominal level for different levels of the innovation standard deviation

(σϱ) and of the unconditional asymmetry parameter (ωϱ, left panel) and of the autocorrelation

parameter (ϕϱ, right panel). Already for ηϱ = 0.04 the test presents acceptable power levels,

especially in cases where the unconditional level is above 0.5 and the autocorrelation in just above

0.7. Above these values, the power fast approaches 1 for any combination of the parameters.
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Table 2: Time-varying skewness test for Fama-French 3 factors

Daily Monthly

Rm SMB HML Rm SMB HML

————————– Skewness ————————–
Skew -0.827 -1.032 0.184 -0.743 0.147 -0.093
E-Skt-t -0.181 -0.142 0.062 -0.629 0.117 -0.006

QSkew5 -0.064 -0.053 0.027 -0.200 0.030 0.055
QSkew1 -0.048 -0.046 0.016 -0.161 -0.014 0.035
ϱ -0.063 -0.055 0.024 -0.212 0.049 -0.002

—————————– Test —————————–
BNp 0.036 0.078 0.150 0.006 0.204 0.357
LMp 0.000 0.000 0.000 0.685 0.141 0.000

Note: The top part of the table reports skewness statistics for the considered anomalies. Specifically, we report the
sample skewness (Skew), the estimated skewness from the Epsilon-Skew-t model (E−Skt), Groeneveld and Meeden
(1984) quantile skewness at the 5th and 1th quantiles, and the estimated asymmetry parameter, ϱ. In the bottom
part we report the p-values for Bai and Ng (2005) test for unconditional skewness (BNp), and for the LM test for
time-varying skewness (LMp) developed in Section 4.

6 Testing market anomalies

In this Section we propose an application of the test developed above to some of the well-known

market anomalies identified in the financial literature (Fama and French, 1992, 1995; Carhart, 1997;

Pástor and Stambaugh, 2003, see, e.g.,). Whereas there exists a multitude of such anomalies, the

so called factor zoo (Cochrane, 2011), in what follow we will focus on the three factors commonly

used in the 3-factor regression (3FFF, Fama and French, 1993): the excess return on the market

portfolio (Rm), the small-minus-big (SMB) and the high-minus-low (HML). We estimate a score-

driven model with time-varying volatility, as in Equation (7), and Epsilon-Skew-t innovations,11

and we test the resulting conditional scaled score for the asymmetry parameter. We run the exercise

both at the daily and monthly frequency, for a sample that goes from 1960 to 2022.

First, we analyze the skewness properties of the data. The top panel of Table 2 reports several

measures of skewness for the anomalies. Specifically, we report the sample skewness (Skew), the

estimated skewness from the Epsilon-Skew-t model (E − Skt) computes as per Equation (5), two

robust measures of skewness, QSkew5 and QSkew2, and the estimated asymmetry parameter,

ϱ. It’s important to notice that quantile skewness measures (Groeneveld and Meeden, 1984) are

bounded in the [−1 1] region, similarly to the asymmetry parameter, and therefore are directly

comparable. Starting from the daily frequency, the values show a strong presence of negative
11Creal et al. (2013) show that when the innovations belong to the class of t densities, the score-driven filter for

volatility downplays outliers more aggressively than in the t-GARCH of Bollerslev (1987).

13



Daily Monthly

1970 1980 1990 2000 2010 2020
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

1970 1980 1990 2000 2010 2020
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Market SMB HML

Figure 4: Time-varying skewness
Note: The plots report the time-varying quantile skewness for the three anomalies estimated as 1-year rolling window
both for daily and monthly returns.

skewness for the market and SMB, whereas mildly positive asymmetry for HML. Evidence at the

monthly frequency appears less striking, with SMB and HML presenting discording signs over

different skewness measures. It is however interesting to notice that the skewness measures by the

asymmetry parameter is largely consistent with quantile skewness values at the 5th quantile. Before

proceeding with the testing, to help visualize these results, in Figure 4 we report rolling measure

of quantile skewness computed over windows of 1 year for the daily and monthly returns. The

patterns are largely consistent across frequencies.12

The bottom rows of Table 2 report the p-values for the Bai and Ng (2005) test for unconditional

skewness (BNp) and that for the LM test derived in Section 4 (LMp). At the daily frequency,

the presence of unconditional skewness cannot be rejected for the market and SMB, but the

LM test shows overwhelming evidence in favor of conditional asymmetry in all three factors. At

the monthly frequency, on the other hand, the picture looks rather different. The market seems

to feature significant unconditional skewness, but this does not present a strong autocorrelation;

SMB is the only one for which skewness is rejected both conditionally and unconditionally, whereas

for HML our test strongly rejects the null hypothesis.

7 Conclusions

This paper proposed a review of the Epsilon-Skew-t distribution first introduced by Arellano-

Valle et al. (2005). Derivations for the probability, distribution and quantile functions are provided,
12These plots should be taken as guidance only, as autocorrelation in the series is implicitly inherited by the

rolling-windows.
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as well as for the moments. We also provide a detailed derivation of the score vector and the

associated Information matrix, exploiting the relation between the t distribution and the Beta

distribution, which allows to easily evaluate expectations for functions of the (skew-) t variate.

Interest for this distribution has recently emerged in the economic and financial literature due to

its nice properties and easiness to use in time series applications when skewness is varying over

time (see, e.g., Lucas and Zhang, 2016; Delle Monache et al., 2021). Within this context, we also

develop a parametric test to evaluate the presence of autocorrelated skewness in time series data.

The test belongs to the class of LM tests, and in a context with fixed location, which is rather

common in financial applications, the test collapses to a Box-Pierce test on the autocorrelation of

the conditional score of the asymmetry parameter. The test presents good asymptotic properties,

as evaluated by means of a Monte Carlo simulation exercise.

The test is applied to the three most common asset pricing anomalies. Results point at an over-

whelming presence of time-varying asymmetry in these anomalies at the daily frequency, whereas

only modest evidence arises at the monthly frequency. Recently, Barroso and Maio (2021) have

analysed the risk-return trade-off for some of the well-known market anomalies, reporting mixed

evidence. While they show that the 3FFF present some degree of sample skewness, our results

should be taken as a warning sign that inconclusive evidence about the presence of a risk-return

trade-off could be plagued by the presence of conditional skewness, a point already illustrated by

Theodossiou and Savva (2016) in the case of the market portfolio and by Bianchi et al. (2022) for

momentum returns.

8 Proof of Proposition 1

Following Kim (2008), the moments of the Htν can be obtained as:

E[Zk+2] = Eη[η−
k+2
2 V k+2], k = −1, 0, 1, . . . , (8.1)

where

V k+2 = −
(
√
ηb)k+1ϕ(

√
ηb)− (

√
ηa)k+1ϕ(

√
ηa)

Fν(b)− Fν(a)
+ (k + 1)V k.

We can now compute Equation (8.1) for k = −1, 0, 1, 2:

• k = −1:

E[Z] = 2Eη[η
− 1

2ϕ(
√
η · 0)] = 2

Γ
(
ν−1
2

)
ν

ν
2

2Γ
(
ν
2

)
Γ
(
1
2

)ν− ν−1
2 =

Γ
(
ν−1
2

)
Γ
(
ν
2

)
Γ
(
1
2

)√ν;
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• k = 0:

E[Z2] = Eη[η−1] =
ν

ν − 2
;

• k = 1:

E[Z3] = 2Eη[η−
3
2V ] = 2Eη[η−

3
22ϕ(

√
η · 0)] = 4

Γ
(
ν−3
2

)
ν

ν
2

4Γ
(
ν
2

)
Γ
(
1
2

)ν− ν−3
2

=
2Γ

(
ν−1
2

)
ν

3
2

(ν − 3)Γ
(
ν
2

)
Γ
(
1
2

) .
• k = 2

E[Z4] = 3Eη[η−2] = 3
ν2

(ν − 4)(ν − 2)
.

Hence, d1(ν) =
√
νG(ν), d2(ν) = ν

ν−2
, d3(ν) = 2ν

3
2

ν−3
G(ν), and d4(ν) = 3ν2

(ν−4)(ν−2)
with G(ν) =

Γ( ν−1
2 )

Γ( ν
2 )Γ(

1
2)

. Given ν−1
2
Γ(ν−1

2
) = Γ(ν+1

2
), then

G(ν) =
2Γ(ν+1

2
)

(ν − 1)Γ(ν
2
)Γ(1

2
)
=

2ν
1
2

ν − 1
C(ν).

Therefore, d1(ν) = 2ν
ν−1

C(ν), d2(ν) = ν
ν−2

, d3(ν) = 4ν2

(ν−3)(ν−1)
C(ν), and d4(ν) = 3ν2

(ν−4)(ν−2)
.

9 Proof of Proposition 2

Location The gradient with respect to the location parameter reads:

∇µ =
1

σ
wζ.

Proof.

∇µ =
∂ℓ

∂µ
= −

(
1 + η

2η

)
1

m(µ, σ, ϱ)

∂m(µ, σ, ϱ)

∂µ

=

(
1 + η

2η

)
h2

h2 + ηζ2
2ηζ

h2σ

=
1

σ
wζ.

■
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Squared scale The gradient with respect to the squared scale parameter reads:

∇σ2 =
1

2σ2
(wζ2 − 1).

Proof.

∇σ2 =
∂ℓ

∂σ2
= − 1

2σ2
−

(
1 + η

2η

)
1

g(µ, σ2, ϱ)

∂g(µ, σ2, ϱ)

∂σ2

= − 1

2σ2
+

(
1 + η

2η

)
h2

h2 + ηζ2
ηζ2

h2σ2

=
1

2σ2

[
(1 + η)ζ2

h2 + ηζ2
− 1

]
=

1

2σ2
(wζ2 − 1)

■

Shape The gradient with respect to the shape parameter reads:

∇ϱ,t =
sgn(εt)

(1 + sgn(εt)ϱt)
wtζ

2
t

Proof.

∇ϱ,t =
∂ℓt
∂ϱt

= −
(
1 + η

2η

)
1

g(µt, σt, ϱt)

∂g(µt, σt, ϱt)

∂ϱt

= −
(
1 + η

2η

)
h2t

h2t + ηζ2t

(
−2ηζ2t sgn(εt)

h3t

)
=

(1 + η)

h2t + ηζ2t

sgn(εt)

ht
ζ2t

=
sgn(εt)

(1 + sgn(εt)ϱt)
wtζ

2
t

■

10 Useful properties of the Beta and t distributions

Consider the following results:

Corollary 1. Given a beta distributed variable, b ∼ B (α, β), then

E[bh(1− b)k] =
B (α + h, β + k)

B (α, β)
,

where B(α, β) is the beta function (Harvey, 2013, pag. 23).
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Corollary 2. Let T ∼ t1/η be a t-distributed random variable with 1
η

degrees of freedom. We can

define

b =
ηT 2

1 + ηT 2
∼ B

(
1

2
,
1

2η

)
,

and

1− b =
1

1 + ηT 2
∼ B

(
1

2η
,
1

2

)
,

(Harvey, 2013, pag. 25).

Corollary 3. Let T ∼ t1/η be a t-distributed random variable with 1
η

degrees of freedom. Then,

√
ηT

1 + ηT 2
=

√
ηT√

1 + ηT 2

1√
1 + ηT 2

= b
1
2 (1− b)

1
2 .

Notable results Following the result in Corollary 1, we can compute some notable expectations

of the form E[bh(1− b)k], where b is defined as in Corollary 2:

E[b] =
B
(

3
2
, 1
2η

)
B
(

1
2
, 1
2η

) =

1
2
Γ
(
1
2

)
Γ
(

1
2η

)
Γ
(

1+3η
2η

) Γ
(

1+η
2η

)
Γ
(
1
2

)
Γ
(

1
2η

) =
η

1 + η
, (10.1)

E[b2] =
B
(

5
2
, 1
2η

)
B
(

1
2
, 1
2η

) =

3
4
Γ
(
1
2

)
Γ
(

1
2η

)
Γ
(

1+5η
2η

) Γ
(

1+η
2η

)
Γ
(
1
2

)
Γ
(

1
2η

) =
3η2

(1 + 3η)(1 + η)
, (10.2)

E[b
1
2 (1− b)

1
2 ] =

B
(
1, 1+η

2η

)
B
(

1
2
, 1
2η

) =
Γ (1) Γ

(
1+η
2η

)
Γ
(

1+η
2η

+ 1
) Γ

(
1+η
2η

)
Γ
(
1
2

)
Γ
(

1
2η

) =
2η

1 + η

Γ
(

1+η
2η

)
√
πΓ

(
1
2η

) =
2
√
η

1 + η
C, (10.3)

E[b(1− b)] =
B
(

3
2
, 1+2η

2η

)
B
(

1
2
, 1
2η

) =

1
2
Γ
(
1
2

)
1
2η
Γ
(

1
2η

)
Γ
(

1+5η
2η

) Γ
(

1+η
2η

)
Γ
(
1
2

)
Γ
(

1
2η

) =
η

(1 + 3η)(1 + η)
, (10.4)

E[b
3
2 (1− b)

1
2 ] =

B
(
2, 1+η

2η

)
B
(

1
2
, 1
2η

) =
Γ
(

1+η
2η

)
Γ
(

1+5η
2η

) Γ
(

1+η
2η

)
Γ
(
1
2

)
Γ
(

1
2η

) =
4C√ηη

(1 + 3η)(1 + η)
, (10.5)

recognizing that B(a, b) = Γ(a)Γ(b)
Γ(a+b)

, and Γ
(

1+5η
2η

)
= 1+3η

2η
Γ
(

1+3η
2η

)
= (1+3η)(1+η)

4η2
Γ
(

1+η
2η

)
, Γ(2) =

Γ(1) = 1, and Γ
(
1
2

)
=

√
π. We will extensively use these results in the following derivations.

11 Proof of Proposition 3

Iµ,µ.

Iµ,µ = E[∇µ∇′
µ] =

1

σ2
E
[
w2ζ2

]
,
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taking advantage of of the two-piece representation we get:

Iµ,µ = P (y ≥ µ)E [∇µ,+∇µ,+] + P (y < µ)E [∇µ,−∇µ,−]

=
1

σ2

(
P (y ≥ µ)E[(w2ζ2)+] + P (y < µ)E[(w2ζ2)−]

)
=

1

σ2
E[w2ζ2].

Notice that:

w2ζ2 =
(1 + η)2

η

ηζ2

h2 + ηζ2
1

h2 + ηζ2
=

(1 + η)2σ2

η

ηε2

σ2h2 + ηε2
1

σ2h2 + ηε2
;

evaluating over the positive (negative) semi-support:

(w2ζ2)+ =
(1 + η)2

η(1 + ϱ)2
ηζ2+

1 + ηζ2+

1

1 + ηζ2+
, (w2ζ2)− =

(1 + η)2

η(1− ϱ)2
ηζ2−

1 + ηζ2−

1

1 + ηζ2−
.

Using Corollaries 1 and 2 and Equation (10.4) we have:

E[(w2ζ2)+] =
(1 + η)

(1 + 3η)(1 + ϱ)2
, E[(w2ζ2)−] =

(1 + η)

(1 + 3η)(1− ϱ)2
,

and thus,

Iµ,µ =
(1 + η)

σ2(1 + 3η)

(
P (y ≥ µ)

(1− ϱ)2
+
P (y < µ)

(1− ϱ)2

)
=

(1 + η)

σ2(1 + 3η)(1 + ϱ2)
.

■

Iσ2,σ2.

Iσ2,σ2 = E[∇σ2∇′
σ2 ] =

1

4σ4
E
[
(wζ2 − 1)2

]
=

1

4σ4
E
[
1− 2wζ2 + w2ζ4

]
=

1

4σ4

(
E
[
w2ζ4

]
− 1

)
,

as per ??. Using the two-piece representation:

Iσ2,σ2 = P (y ≥ µ)E
[
∇σ2,+∇′

σ2,+

]
+ P (y < µ)E

[
∇σ2,−∇′

σ2,−
]

=
1

4σ4

(
P (y ≥ µ)E[(w2ζ4)+] + P (y < µ)E[(w2ζ4)−]− 1

)
.
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Notice that:

w2ζ4 =
(1 + η)2

η2

(
ηζ2

h2 + ηζ2

)2

=
(1 + η)2

η2

(
ηε2

σ2h2 + ηε2

)2

,

and evaluating over the positive (negative) semi-support:

(w2ζ4)+ =
(1 + η)2

η2

(
ηζ2+

1 + ηζ2+

)2

, (w2ζ4)− =
(1 + η)2

η2

(
ηζ2−

1 + ηζ2−

)2

.

Using Corollaries 1 and 2 and Equation (10.2) we have:

E[(w2ζ4)+] = E[(w2ζ4)−] =
(1 + η)2

η2
E
[
b2
]
=

3(1 + η)

(1 + 3η)
(11.1)

Thus,

Iσ2,σ2 =
1

4σ2

(
3(1 + η)

(1 + 3η)
− 1

)
=

1

2σ4(1 + 3η)

■

Iϱ,ϱ.

Iϱ,ϱ = E[∇ϱ∇′
ϱ] =

1

h2
E
[
w2ζ4

]
.

Using the two-piece representation and Equation (11.1) we can write:

Iϱ,ϱ = P (y ≥ µ)E [∇ϱ,+∇ϱ,+] + P (y < µ)E [∇ϱ,−∇ϱ,−]

=
P (y ≥ µ)

(1 + ϱ)2
E
[
(w2ζ4)+

]
+
P (y < µ)

(1− ϱ)2
E
[
(w2ζ4)−

]
=

3(1 + η)

(1 + 3η)(1− ϱ2)
.

■

Iµ,ϱ.

Iµ,ϱ = E[∇µ∇′
ϱ] =

sgn(ε)

hσ
E
[
w2ζ3

]
Using the two-piece representation we have:

Iϱ,µ = P (y ≥ µ)E [∇ϱ,+∇µ,+] + P (y < µ)E [∇ϱ,−∇µ,−]

=
P (y ≥ µ)

(1 + ϱ)σ
E
[
(w2ζ3)+

]
− P (y < µ)

(1− ϱ)σ
E
[
(w2ζ3)−

]
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=
1

2σ

(
E
[
(w2ζ3)+

]
− E

[
(w2ζ3)−

])
.

Notice that:

w2ζ3 =
(1 + η)2

η
√
η

ηζ2

h2 + ηζ2

√
ηζ

h2 + ηζ2
=

(1 + η)2

η
√
η

ηε2

σ2h2 + ηε2

√
ησε

σ2h2 + ηε2

and evaluating over the positive (negative) semi-support:

(w2ζ3)+ =
1

(1 + ϱ)

(1 + η)2

η
√
η

ηζ2+
1 + ηζ2+

√
ηζ+

1 + ηζ2+
, (w2ζ3)− = − 1

(1− ϱ)

(1 + η)2

η
√
η

ηζ2−
1 + ηζ2−

√
η|ζ−|

1 + ηζ2−
,

for ζ− = −|ζ−|. Using Corollaries 1 and 2 and Equation (10.5) we get:

E[(w2ζ3)+] =
4C(1 + η)

(1 + ϱ)(1 + 3η)
, E[(w2ζ3)−] = − 4C(1 + η)

(1− ϱ)(1 + 3η)
; (11.2)

therefore,

Iϱ,µ =
4C(1 + η)

σ(1 + 3η)(1− ϱ2)

■

Iµ,σ2.

Iµ,σ2 = E [∇µ∇σ2 ] =
1

2σ3
{E[w2ζ3]− E[wζ]}

=
1

2σ3
E[w2ζ3],

as per equation ??. Using the two-piece representation and Equation (11.2) we obtain:

Iµ,σ2 = P (y ≥ µ)E[∇µ,+∇σ2,+] + P (y < µ)E[∇µ,+∇σ2,−]

=
1

2σ3

(
P (y ≥ µ)E

[
(w2ζ3)+

]
+ P (y < µ)E

[
(w2ζ3)−

])
= 0.

■

Iϱ,σ2.

Iϱ,σ2 = E [∇ϱ∇σ2 ] =
sgn(ε)

2hσ2

(
E[w2ζ4]− E[wζ2]

)
.

Using the two-piece representation we get:

Iϱ,σ2 = P (y ≥ µ)E [∇ϱ,+∇σ2,+] + P (y < µ)E [∇ϱ,−∇σ2,−]
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=
1

4σ2

(
E
[
(w2ζ4)+

]
− E

[
(w2ζ4)−

])
− 1

4σ2

(
E
[
(wζ2)+

]
− E

[
(wζ2)−

])
= 0,

after using ?? and Equation (11.1). ■

12 Proof of Proposition 4

Starting from

ζ̃ϱ(P ) =
1

T
∇κ′I−1

κκ∇κ +
1

T
∇κ′I−1

κκIκθ
(
Iθθ − IθκI−1

κκIκθ
)
IθκI−1

κκ∇κ, (12.1)

we can first show that Iθκ = 0, and then that 1
T
∇κ′I−1

κκ∇κ = Q∇(P ), the portmanteau test statistics

of Box and Pierce (1970).

First, let us derive the elements of Iθk =
[
Ikν Ikψσ Ikωϱ

]
:

Ikν = E
[(

∂pt
∂ϱt+1

∂ϱt+1

∂k

)(
∂pt
∂σ2

t+1

∂σ2
t+1

∂ν
+
∂pt
∂ν

)]
;

= Iσϱ E
[
∂ϱt+1

∂k

∂σ2
t+1

∂ν

]
Ikψσ = E

[(
∂pt
∂ϱt+1

∂ϱt+1

∂k

)(
∂pt
∂σ2

t+1

∂σ2
t+1

∂ψσ

)]
= Iσϱ

[
∂ϱt+1

∂k

∂σ2
t+1

∂ψσ

]
;

Ikωϱ = E
[(

∂pt
∂ϱt+1

∂ϱt+1

∂k

)(
∂pt
∂ϱt+1

∂ϱt+1

∂ωϱ
+

∂pt
∂σ2

t+1

∂σ2
t+1

∂ωϱ

)]
= Iσϱ E

[
∂ϱt+1

∂k

∂σ2
t+1

∂ωϱ

]
+ Iϱϱ E[sϱ,t]

= Iσϱ E
[
∂ϱt+1

∂k

∂σ2
t+1

∂ωϱ

]
.

Therefore, for Proposition 3, Iθk = E
[
∂ϱt+1

∂k

∂σ2
t+1

∂θ

]′
Iσϱ = 0.

Thus, Equation (12.1) reduces to ζ̃ϱ(P ) = 1
T
∇κ′I−1

κκ∇κ. Following Harvey (2013), for ϱt covari-

ance stationary and applying the law of iterated expectations,

∂ϱt
∂kj

=
P∑
i=1

κi−1
∂st−i
∂κj

+ st−j−1,

such that ∂ϱt
∂k′

|H0 = st−1 = [st−1, . . . , st−P ]
′, and so under the null, Ikk = ς4ϱIP . Therefore, for
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∂p
∂κj

=
∑
t

∂ log pt
∂ϱt

∂ϱt
∂κj

=
∑
t

stst−1−j, j = 0, . . . , P ,

ξϱ(P ) =
1

T

∑
t

P∑
j=0

(stst−1−j)
2

ς4s
= T

P∑
j=0

ρ2(j), (12.2)

which is the portmanteau statistics of Box and Pierce (1970), Q(P ), with a χ2
1 limiting distribution,

and ρ(j) is the jth sample autocorrelation of the score.
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