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Abstract

We model permanent and transitory changes of the predictive density of US GDP
growth. A substantial increase in downside risk to US economic growth emerges over
the last 30 years, associated with the long-run growth slowdown started in the early
2000s. Conditional skewness moves procyclically, implying negatively skewed predic-
tive densities ahead and during recessions, often anticipated by deteriorating finan-
cial conditions. Conversely, positively skewed distributions characterize expansions.
The modelling framework ensures robustness to tail events, allows for both dense or
sparse predictor designs, and delivers competitive out-of-sample (point, density and
tail) forecasts, improving upon standard benchmarks.
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1 Introduction
The Global Financial Crisis and the subsequent recession left policymakers with several new

challenges to face. In a world of persistently sluggish growth, subject to infrequent but deep

recessions, the idea of central bankers as ‘risk managers’ gained renewed popularity (see,

e.g., Cecchetti, 2008). In this environment, policy makers pursuing a ‘plan for the worst,

hope for the best ’ approach rely on downside risk measures to assess the distribution of risk

around modal forecasts. Yet, gauging the degree of asymmetry of business cycle fluctuations

remains a challenging task, and even more so it is to reliably assess the time variation of

downside risk. In addition, sound economic policy should consider the evolution of secular

macroeconomic trends in pursuing the long-run goals of price stability and sustainable

economic growth. In this paper, we introduce a generalised, comprehensive framework fit

to provide policy guidance on the developments of downside risks, tracking permanent and

transitory changes in the conditional distribution of GDP growth.

We provide novel evidence in support of time-varying conditional asymmetry of GDP

growth’s distribution. Despite unconditional asymmetry remains unsupported by the data,

conditional skewness, and thus downside risk to economic growth, exhibits significant time

variation. Motivated by this evidence, we introduce a novel, flexible methodology that

allows us to track and predict time-varying skewed Student-t (Skew-t) conditional densities,

where the time variation of the location, scale and asymmetry parameters is driven by the

score of the predictive likelihood function (Creal et al., 2013; Harvey, 2013), as well as by

a set of observed predictors. The latter allow us to explore to what extent downside risk

to economic growth reflects imbalances arising in financial markets (Adrian et al., 2019).

When assessed based on its out-of-sample performance, our model delivers well calibrated

predictive densities, improving upon competitive benchmarks in terms of point, density and

tail forecasts, as well as leading to timely predictions of the odds of forthcoming recessions.

We provide novel evidence on the permanent and transitory evolution of macroeco-

nomic downside risk. Over the last 30 years, skewness has decreased steadily, implying a
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higher exposure to downside risk, which partially accounts for the slowdown in long-run

growth observed since the early 2000s. Similarly, we document that the fall in macroeco-

nomic volatility since the mid-1980s, the so called Great Moderation, reflects a significant

reduction of upside volatility, with downside volatility remaining stable over the same pe-

riod. Over the short-term, conditional skewness varies procyclically, so that at the onset

of downturns, business cycle exhibits significant negative skewness, while expansions are

characterized by positively skewed distributions. Therefore, the well-documented counter-

cyclicality of GDP growth’s volatility largely reflects increasing downside volatility during

recessions. The extreme realizations of the pandemic quarters are captured through move-

ments in volatility and skewness, allowing the model to remain remarkably stable and

suggesting that such outcomes were, to some extent, tail events.

We show that the inclusion of the four subcomponents of the National Financial Con-

dition Index (NFCI, Brave and Butters, 2012), capturing risk, credit, leverage and non-

financial leverage developments, improves the out-of-sample forecasting accuracy of our

model, in particular during recessions. Financial deepening during expansions is asso-

ciated with positive GDP growth’s skewness, whereas tightening of financial conditions,

especially the build-up of household debt, consistently predicts downside risk episodes. Al-

though aggregate measures succeed in summarizing a large amount of data, concerns that

information relevant for assessing risk can remain undetected persist. To this end, we in-

vestigate whether different patterns of sparsity can arise in predicting different features of

the conditional distribution of GDP growth. We follow the ‘shrink-then-sparsify ’ approach

of Hahn and Carvalho (2015), where sparsity is achieved by means of the Signal Adaptive

Variable Selector (SAVS) of Ray and Bhattacharya (2018).1 The build-up of financial in-

stitutions’ and households’ leverage, as well as credit conditions, receive the least shrinkage

over the full sample. We also show that indicators of the balance sheet of the intermediary

sector (Adrian and Shin, 2008), as well as growing imbalances in the housing market (see,

e.g., Gertler and Gilchrist, 2018) were important to timely assess increasing downside risks
1Huber et al. (2021) note that in this setting sparsity is not an artefact of strong a priori beliefs.
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ahead and during the financial crisis. Processing the signal from a large panel of financial

predictors leads to improvements in short-term predictions, especially during 2020.

Our results highlight the importance of accounting for asymmetric business cycle fluctu-

ations. These can emerge through nonlinearities in the transmission of Gaussian shocks (see

Fernández-Villaverde and Guerrón-Quintana, 2020), or reflect conditionally skewed shocks

hitting the economy (as in Bekaert and Engstrom, 2017; Salgado et al., 2019). Our results

emphasise i) the necessity to distinguish between “good” and “bad” uncertainty, which can

potentially impact economic activity in opposite directions (Segal et al., 2015), ii) the need

to account for the nonlinear relationship between financial conditions and credit availability,

and the distribution of GDP growth for policy monitoring and stabilization policy design

(Adrian et al., 2020), and iii) that the fall in trend-skewness of economic growth, and the

associated increase of downside risk over the last three decades, emerge as salient features

of the data that need to be accounted for by theoretical macroeconomic models (see, e.g.,

Jensen et al., 2020).

Related literature. This paper builds on the growing literature exploring the asymme-

try characterizing business cycle fluctuations, and the relationship between real economic

activity and financial conditions. Giglio et al. (2016) and Adrian et al. (2019) uncover a

significant negative correlation between financial conditions and the lower quantiles of the

conditional distribution of future economic growth, by means of quantile regressions. We

introduce a novel approach based on the modeling of the parameters of a Skew-t distribu-

tion. Our approach is based on a rich, yet parsimonious structure, and directly provides

conditional densities. Our model captures persistence in the skewness of the distribution

of GDP growth, consistently with the term structure of growth-at-risk displaying stronger

asymmetry for the short- than for the medium-run (Adrian et al., 2022), and with the

Survey of Professional Forecasters’ short-term density predictions (Ganics et al., 2020).

Differently to other contributions (see, e.g., Adrian et al., 2019; Plagborg-Møller et al.,

2020), we model permanent and transitory changes of the distribution of GDP growth.

This is essential to recover well-known stylized facts, such as the Great Moderation (Mc-
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Connell and Perez-Quiros, 2000; Stock and Watson, 2002) and the fall in long-run growth

(Antolin-Diaz et al., 2017; Eo and Morley, 2022), and to uncover negative, decreasing

business cycle skewness over the last 30 years.

A number of recent contributions have called into question the presence of asymmetry

in business cycle fluctuations (see, e.g., Carriero et al., 2020). Our approach allows for, but

does not impose, skewness in the conditional distribution. Yet, we document significant

variation in the asymmetry of GDP growth. Allowing for time-varying asymmetry leads

to substantial gains in out-of-sample forecasts and downside risk predictions over stan-

dard volatility models, whose competitiveness has recently been highlighted by Clark and

Ravazzolo (2015) and Brownlees and Souza (2021).

Existing models for conditional skewness rely on ad hoc laws of motion for the time-

varying parameters, and the asymmetry is updated as a function of higher-order powers

of the residuals (Hansen, 1994; Harvey and Siddique, 1999). We, instead, rely on the

score-driven framework put forward by Creal et al. (2013) and Harvey (2013), which read-

ily accommodates parameters’ time variation under different distributional assumptions

(Koopman et al., 2016). Hence, parameters update according to (highly) nonlinear func-

tions of past prediction errors, depending, among other, on the shape of the conditional

distribution. Thus, not only the updating mechanism adapts to the local properties of

the data, but it is also robust to the presence of extreme realizations, contrary to updates

based on higher-order powers of the residuals. Within the score-driven setting, to the best

of our knowledge, we are the first to rely on Bayesian estimation methods. This allows us

to jointly tackle parameters’ proliferation and overfitting, as well as incorporate estimation

uncertainty when assessing the predictions of the model.

Structure. The remainder of the paper is organized as follows. Section 2 provides evidence

of time-varying business cycle asymmetry. Section 3 presents the model, the estimation

approach and the forecasting procedure. In Section 4 we discuss the features of the con-

ditional distribution of GDP growth, and their relation to financial predictors. Section 5

reports the out-of-sample forecast and downside risk prediction evaluation. In Section 6 we
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Table 1: Score-based tests for time variation

time-varying time-varying
location location & scale

Q Q∗ N Q Q∗ N

Scale2 7.187∗∗∗ 7.296∗∗∗ 0.979∗∗∗
Shape 8.497∗∗∗ 8.626∗∗∗ 0.603∗∗ 22.608∗∗∗ 22.951∗∗∗ 1.053∗∗∗

Note: Q is the portmanteau test, Q∗ is the Ljung-Box extension (with automatic lag selection) and N
corresponds to the Nyblom test. Q and Q∗ are distributed as a χ2

1, while N is distributed as a Cramer
von-Mises distribution with 1 degree of freedom. ∗ p < 10%, ∗∗ p < 5%, ∗∗∗ p < 1%.

investigate the predictive ability of the large set of financial indicators. Section 7 concludes.

2 Motivating evidence
Assessing the degree of skewness of GDP growth is notoriously challenging. Over the 1973-

2020 (1973-2019) sample, unconditional skewness is -2.58 (-0.42), but one cannot reject the

null of symmetry using the Bai and Ng (2005) test. However, the absence of skewness in

the unconditional distribution, does not imply conditional distributions being symmetric as

well (Carriero et al., 2020). The low precision of skewness estimates can potentially reflect

the dynamic nature of the asymmetry of economic fluctuations.2

Harvey (2013, Section 2.5) highlights that the Lagrange Multiplier principle can be

employed to construct appropriate test statistics for the time variation of parameters (see

Appendix A). Starting from the assumption that GDP growth follows an AR(2) process

with Skew-t innovations, with a shape parameter pinning down the degree of asymmetry, we

test for the time variation of this parameter considering both the case of constant volatility

and the more realistic case of time-varying volatility. Table 1 reports the statistics for

the Portmanteau (Q), Ljung-Box (Q∗) and Nyblom (N) tests. The null hypothesis of a

constant shape parameter is strongly rejected against the alternative of time variation; the

rejection of the Nyblom test suggests that the parameter is likely to be highly persistent.

Starting from this novel evidence, we introduce a modeling framework that allows us

to track the time-varying asymmetry in the conditional distribution of GDP growth.
2Using the Bai and Ng (2005) test over different rolling windows, we often reject the null of symmetry,

with significant negative and positive skewness detected over the sample. See Fig. A.1 in Appendix A.
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3 A time-varying Skew-t model for GDP growth
Let yt denote the annualized quarter-on-quarter GDP growth at time t. We assume its con-

ditional distribution can be characterized by a Skew-t (Arellano-Valle et al., 2005; Gómez

et al., 2007), with time-varying location µt, scale σt, and shape ϱt parameters:

yt = µt + εt, εt ∼ Sktν(0, σt, ϱt), t = 1, ..., T, (1)

with constant degrees of freedom ν > 3, σt > 0, and ϱt ∈ (−1, 1). The shape parameter

fully characterizes the asymmetry of the distribution, with 1+ϱt
1−ϱt

defining the ratio of the

probability mass on the right, over the probability mass on the left of the mode, µt. There-

fore, negative (positive) values of ϱt imply negatively (positively) skewed distributions. The

conditional log-likelihood function of the observation at time t is:

ℓt = log p(yt|θ,Y t−1) = log C(η)− 1

2
log σ2

t −
1 + η

2η


log

[
1 +

ηε2t
(1+ϱt)2σ2

t

]
, εt ≥ 0

log
[
1 +

ηε2t
(1−ϱt)2σ2

t

]
, εt < 0

, (2)

with η = 1
ν
, C(η) =

√
ηΓ

(
1+η
2η

)
√
πΓ

(
1
2η

) , and Γ(·) is the Gamma function. The vector θ ∈ Θ is the

vector of static parameters of the model, and Y t−1 is the information set up to time t−1.

For ϱt = 0 we have the symmetric Student-t distribution, for η → 0 we retrieve the epsilon-

Skew-Gaussian distribution of Mudholkar and Hutson (2000), whereas the distribution

collapses to a Gaussian density when both conditions hold. Thus, we allow for, but do

not impose, skewness in the conditional distribution of GDP growth. We model the time

variation of the parameters within the score driven framework of Creal et al. (2013) and

Harvey (2013). In order to ensure the scale σt to be positive and the shape ϱt ∈ (−1, 1), we

model γt = log(σt) and δt = arctanh(ϱt).3 Therefore, the vector of time-varying parameters
3Differently from the Skew-t distribution of Azzalini and Capitanio (2003), the one of Gómez et al.

(2007) has an information matrix which is always non-singular, provided |ϱt| < 1. For practical purposes,
we set ϱt = c tanh(δt), with c being a constant close but below 1, to ensure ϱt ∈ (−1, 1). This results in a
small change in the Jacobian of the transformation, and is omitted to simplify the exposition.
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is ft = [µt, γt, δt]
′ and takes values in Fθ. The updating mechanism follows:4

ft+1 = Ast +Bft + CXt, t = 1, ..., T, (3)

where A collects the parameters governing the learning rates from the scaled score, st, which

we define as an appropriate transformation of the prediction error, B contains autoregres-

sive parameters, and C collects loadings on a potential set of covariates Xt. Specifically,

st = Ṡ−1
t ∇̇t is the scaled score, with ∇̇t =

∂ℓt
∂ft

= J ′
t∇t, where ∇t =

[
∂ℓt
∂µt

, ∂ℓt
∂σ2

t
, ∂ℓt
∂ϱt

]′
is the

gradient of the log-likelihood function with respect to the location, squared scale and shape

parameter, and Jt is the Jacobian matrix associated to the nonlinear transformation of the

time-varying parameters. Ṡt is a scaling matrix, set as a smoothed version of the diago-

nal of the Information matrix: Ṡt = (1 − χ)Ṡt−1 + χ(J ′
tdiag(It)Jt)

1
2 , where It = E[∇t∇′

t],

and 0 < χ < 1 is estimated jointly with θ. Hence, each element of the score vector has

(approximately) unit variance, and is proportional to the respective gradient.5 Smoothing

Ṡt makes it less sensitive to a single observation, avoids instabilities when |ϱt| → 1, and

renders the filtering process more robust (see, e.g., Creal et al., 2013).

The resulting model belongs to the class of observation-driven models, for which the

trajectories of the time-varying parameters are perfectly predictable one-step-ahead given

past information, and the log-likelihood function is available in closed form (Cox, 1981).

The following Proposition provides the closed form expressions for the gradient and the

associated Information matrix.

Proposition 1. Given the specification in Eq. (1) and the likelihood in Eq. (2), the elements

of the gradient ∇t, with respect to the location, squared scale and shape parameters, are:

∇µ,t =
1
σt
wtζt, ∇σ2,t =

1
2σ2

t
(wtζ

2
t − 1), ∇ϱ,t =

sgn(εt)
(1+sgn(εt)ϱt)

wtζ
2
t , (4)

where wt = (1+η)

(1+sgn(εt)ϱt)2+ηζ2t
and ζt = εt

σt
denotes the standardized prediction error, and

4In Section 3.1 we allow the time-varying parameters to feature a permanent and a transitory component.
5Scaling the gradient by the diagonal of the Information matrix ensures that negative (positive) predic-

tion errors translate into negative (positive) updates of the conditional location and shape, and therefore
of the conditional mean. This desirable property is not always guaranteed by the full information matrix.
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sgn(·) is the sign function. The associated Information matrix reads:

It = E[∇t∇′
t] =


(1+η)

σ2
t (1−ϱ2t )(1+3η)

0 4C(1+η)

σt(1−ϱ2t )(1+3η)

0 1
2(1+3η)σ4

t
0

4C(1+η)

σt(1−ϱ2t )(1+3η)
0 3(1+η)

(1−ϱ2t )(1+3η)

 . (5)

Defining ft = [µt, γt, δt]
′, where γt = log(σt) and δt = arctanh(ϱt), the Jacobian matrix,

Jt =
∂[µt,σ2

t ,ϱt]

∂[µt,γt,δt]′
, is diagonal with elements [1, 2σ2

t , 1− ϱ2t ]. Proof. See Appednix B. ■

Proposition 1 highlights the central role of re-weighting the standardized prediction

error for the updating of the time-varying parameters. Weights, wt, penalize extreme

innovations depending on the thickness of the tails, as well as the estimated volatility and

asymmetry as of time t. The top left panel of Fig. 1 displays the weights associated with the

prediction error, for alternative model parametrizations. In a Gaussian setting (black line)

weights are constant and equal to unity, implying no discounting. When the asymmetry

parameter is zero (red line), the weights display the classic outlier-discounting typical of

the Student-t distributions. When the distribution is positively (negatively) skewed, i.e.,

for ϱt > 0 (ϱt < 0), negative (positive) prediction errors, being less likely in expectation,

command a larger update of the parameters. This asymmetric treatment of ζt is more

pronounced as skewness grows larger (i.e., |ϱt| → 1).

To illustrate how the standardized prediction errors translate into updates for the time-

varying parameters, Fig. 1 plots the scaled scores for χ = 1 (i.e., no smoothing),

sµ,t=
√

(1+3η)(1+ϱ2t )

(1+η)
wtζt, sγ,t=

√
(1+3η)

2
(wtζ

2
t −1), sδ,t=sgn(εt)

√
(1+3η)(1−sgn(εt)ϱt)
3(1+η)(1+sgn(εt)ϱt)

wtζ
2
t (6)

against the standardized innovations. The location updates in the direction of the pre-

diction error. When the distribution is Gaussian, the update is linear in the prediction

error as in traditional state-space models. Heavy tails introduce an outlier discounting

implying the typical S-shaped influence function (see, e.g. Harvey and Luati, 2014), which

in our case adapts to the asymmetry of the conditional distribution. The shape updates

in the same direction of the prediction error, such that for negative innovations the dis-
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Weights Location

Scale Shape

Figure 1: Prediction error and parameters’ updating
Note: The figures plot the weighting scheme implied by wt, and the scaled scores, for different values of
the standardized prediction error ζt =

εt
σt

. We consider the Gaussian case (black), the symmetric t5 (red),
and positively (blue) and negatively (green) Skt5.

tribution becomes more left skewed. On the contrary, updates of the scale only depend

on the magnitude of the prediction errors: σt increases for wtζ
2
t > 1, and decreases other-

wise. Whereas the scores for the location and shape parameters are positively correlated

(Corr(sµ,t, sδ,t) = 4C√
3
), updates of σt are (unconditionally) uncorrelated with revisions of

the other parameter (see the Information matrix in Eq. (5)). Yet, at the onset of recessions,

when prediction errors are large and negative, updates of the scale and shape parameters

negatively comove, such that dispersion increases and negative skewness deepens.

The updating mechanism associated with the scores in Eq. (6) depends on the param-

eters conditional at time t. For a given prediction error, the magnitude of the updates is

smaller when large errors are expected, i.e. when the scale is large. The asymmetry of

the distribution plays a key role in mapping the prediction error into parameters’ updates.

When the distribution is left skewed, a positive (negative) prediction error leads to stronger
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(weaker) updates, while the opposite is true for positive skew. This property allows the

model to timely detect shifts in the skewness of GDP growth around business cycle turn-

ing points. For instance, whenever a large, negative innovation arrives at the peak of the

cycle, the model promptly updates ϱt, often resulting in a change of sing of the conditional

skewness. In addition, the updating mechanism is robust to the presence of outliers, as

parameters’ updates are inelastic to extreme standardized innovations. Hence, the model

remains well-behaved despite abnormal prediction errors, as observed in 2020.

Existing models allowing for asymmetric t innovations with time-varying conditional

skewness feature updating mechanisms based on simple higher-order powers of the predic-

tion errors (see, e.g., Hansen, 1994; Harvey and Siddique, 1999). These updating present

two main drawbacks. First, the mapping between innovations and time-varying parameters

does not depend on the local properties of conditional distributions. For instance, these

specifications do not account for the higher probability of negative prediction errors when

the conditional distribution is negatively skewed. Second, higher-order powers of the in-

novations make the time-varying parameters inherently sensitive to large prediction errors,

and can thus become unstable in the presence of outliers. Both of those issues are taken

care of by our score-driven updates.

Blasques et al. (2015) show that, in line with the logic of the Gauss-Newton method for

optimization, score-driven updates in a setting with a single time-varying parameter reduce

the local Kullback-Leibler divergence between the true and the model-implied conditional

density, provided the learning rate is positive and sufficiently small. We opt for a diagonal

scaling matrix for the score, such that the updates in our model mimic a Quasi-Newton

multivariate optimization methods.6 Then, for small and positive learning rates, updates

are expected to locally improve the log-likelihood, in that, after an update, the fit would

improve if the next observation was much like the current.7 In Appendix E we show that
6Tapia (1977) and Byrd (1978) show the “superlinear local convergence” property of Newton’s method

and its diagonalization for standard optimization problems (see also Dennis and Schnabel, 1996, Ch. 6).
7We choose a prior for the learning rate that limits its size, so that it (a) reduces the possibility of

overshooting in the direction of the (local) optimum, and (b) assumes conservative views on parameters
time variation. See Section 3.2.
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this set up, in a simulation setting, achieves lower KL divergence values and presents better

updating properties compared to the alternative specifications of Hansen (1994) and Harvey

and Siddique (1999).

3.1 Permanent and transitory components

When modelling the conditional distribution of GDP growth, it is important to allow

for permanent and transitory movements of the moments. Several papers have documented

significant changes in the long-run mean of GDP growth (see, e.g., Antolin-Diaz et al., 2017;

Doz et al., 2020; Eo and Morley, 2022), as well as shifts in the volatility (McConnell and

Perez-Quiros, 2000; Stock and Watson, 2002), and the skewness of the distribution (Jensen

et al., 2020) since the late 1980s. At the same time, Jurado et al. (2015) show that GDP

growth volatility is countercyclical, while Giglio et al. (2016) and Adrian et al. (2019) argue

that business cycle skewness falls sharply during recessions.

To account for these features, we postulate a two-component specification for the time-

varying parameters, in the spirit of Engle and Lee (1999). We posit a random walk updating

for the permanent components, where these are able to track both smooth variations and

sudden breaks of the parameters. Moreover, we allow a set of predictors, Xt, to have a

transitory impact on the parameters of the distribution. Introducing a permanent and

transitory decomposition of the time-varying parameters implies a linear transformation of

the original parameters, hence leaving the scaled score unchanged.

The location is linear in the permanent and transitory components: µt = µ̄t + µ̃t, with

µ̄t+1 = µ̄t + ςµsµ,t, and µ̃t+1 = ϕµ,1µ̃t + ϕµ,2µ̃t−1 + β′
µXt + κµsµ,t, (7)

where the AR(2) specification for µ̃t+1 is able to recover the characteristic hump shaped

impulse response of the data (Chauvet and Potter, 2013). Following Engle and Rangel

(2008), we assume a multiplicative specification for σt; hence, log(σt) = γt = γ̄t + γ̃t, and

γ̄t+1 = γ̄t + ςγsγ,t, and γ̃t+1 = ϕγ γ̃t + β′
γXt + κγsγ,t. (8)
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Similarly, we set δt = δ̄t + δ̃t for the transformed shape parameter, δt = arctanh(ϱt), with

δ̄t+1 = δ̄t + ςδsδ,t, and δ̃t+1 = ϕδ δ̃t + β′
δXt + κδsδ,t. (9)

Therefore, the resulting vector of time-varying parameters becomes ft = (µ̄t, µ̃t, γ̄t, γ̃t, δ̄t, δ̃t)
′,

with the law of motion being a restricted specification of Eq. (3) (see Appendix B).

Plagborg-Møller et al. (2020) consider a time-varying Skew-t specification for GDP

growth and specify the time-varying parameters (location, log-scale and shape) as linear

functions of a set of predictors. In this case - which remains nested within our setting -

the sole source of parameters’ variation stems from the dynamics of the predictors. This

modelling choice generates substantial variability in the underlying parameters, and thus

uncertainty around the estimates. In contrast, our specification allows for both secular and

transitory shifts in the parameters, where the autoregressive structure of the transitory

components makes them functions of discounted values of all past predictors and past

scores (that is, nonlinear functions of past data). As a result, the time-varying parameters

we estimate are smoother and less affected by the noise in the data.8

3.2 Estimation

A feature of observation-driven models is the straightforward computation of the like-

lihood function (Creal et al., 2013; Harvey, 2013). However, the optimization and compu-

tation of confidence intervals remain challenging, in particular when these models feature

rich parametrizations. Bayesian estimators, which rely on Markov Chain Monte Carlo

(MCMC) methods, represent a tractable and theoretically attractive alternative to the

extremum-based estimation and inference (see, e.g., Vrontos et al., 2000). In fact, under

appropriate regularity conditions, asymptotic results guarantee that simulations from a

Markov chain provide, after some burn-in period and sufficient iterations, samples from

the posterior distribution of interest (for details, see Smith and Roberts, 1993; Besag et al.,
8In addition, our framework allows for non-linearities through the mapping of the predictors into the

scores, further down-weighting extreme fluctuations in the data. In Appendix C we highlight that these
additional features are important to recover salient features of the distribution of GDP growth.
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1995).9 In addition, relying on MCMC provides a simple approach to compute any pos-

terior summary of interest as a function of the parameters, e.g. credible intervals for the

time-varying moments of the distribution. Lastly, within a Bayesian setting we can easily

incorporate parameter uncertainty when producing forecasts, which turns out to be critical

for enhancing the reliability of density forecasts, in particular for downside risk predictions.

Taking a Bayesian perspective also allows us to impose realistic priors on the static

parameters, π(θ). We choose priors that in small samples alleviate the problem of parameter

proliferation and overfitting, while for large samples the estimation is eventually dominated

by the information in the data. Our choices encode the view that transitory components

are smooth and stationary, while permanent components capture slow-moving trends. We

assume inverse gamma priors for the score loadings, as we expect these parameters to be

positive. Moreover, we expect the learning rate in the transitory components (κ) to be

larger than those of the permanent components (ς), such that on impact the former react

more to innovations with respect to the latter. This is reflected into a tighter scale for

the prior distribution of ς.10 We set Minnesota-type priors for the AR coefficients (ϕ) of

the transitory components, centered around high persistence values. For the location’s

AR parameters, we also introduce a prior on the sum of coefficients. For the loadings

on the explanatory variables (β) we assume Normal priors centered around zero, with

tight scales to avoid overfitting, in the fashion of L2 regularization. We assume an inverse

gamma prior for η. Lastly, we also estimate the initial values of the permanent components

assuming independent Gaussian priors centered around historical average values for the

three parameters, and with reasonably small variance.

Blasques et al. (2022) underline the importance of filter invertibility for the consis-

tency of the maximum likelihood estimation, and provide the following sufficient con-
9Importantly, Bayesian estimators are not affected by local discontinuities, multiple local minima and

flat areas of the likelihood, and they are often much easier to compute, particularly in high-dimensional
settings (see, e.g., Tian et al., 2007; Belloni and Chernozhukov, 2009).

10Introducing priors for the coefficients governing the learning rate effectively circumvents the ‘pile-up’
problem, often arising when time-varying parameters feature little variation (see, e.g., Stock and Watson,
1998). At the same time these priors are quite conservative, implying that any evidence in favour of the
time variation of permanent components reflects strong evidence in the data.
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dition for invertibility: E log
{
supf∈Fθ

∣∣∣B + A∂s(f,yt,θ)
∂f ′

t

∣∣∣} < 0, (see also Blasques et al.,

2018).11 Ensuring the invertibility of nonlinear time series processes with more than one

time-varying parameter is usually a major challenge, and so is finding the compact set

for which the condition is met for our specification. Nonetheless, we can effectively re-

strict the estimated parameters to verify the empirical version of the invertibility condition,

1
T

T∑
t=1

log
∣∣∣B+A∂s(f,yt,θ)

∂f ′
t

∣∣∣ < 0, by means of a rejection step in our sampler.12

Draws from the posteriors are generated using an Adaptive Random-Walk Metropolis-

Hastings algorithm (Haario et al., 1999), with the chain initialized at the Maximum like-

lihood estimates. For each draw θj, we compute the time-varying parameters {ft|θj}Tt=0,

and the log-likelihood ℓ(y|θj) =
∑T

t=1 ℓt. We accept the current draw with probability

p = min{1, exp(π(θj|y) − π(θ′|y))}, where π(θj|y) ∝ π(θj)ℓ(y|θj) is the posterior distribu-

tion of θj; when accepted, we set θ′ = θj. Credible sets for both static and time-varying

parameters are obtained from the empirical distribution functions arising from the resam-

pling. Appendix D provides an extensive description of the sampling algorithm, details on

the exact prior specification for the parameters and convergence diagnostics. Moreover, we

show that the informative priors that we have chosen remain agnostic with respect to all

the stylized facts documented in Section 4 of the paper.

Monte Carlo exercise Appendix E investigates the small sample properties of the model

through a Monte Carlo analysis. The model successfully tracks parameters’ time variation

from different data generating processes. When the distribution is symmetric throughout

the entire sample, the model estimates a null shape parameter, with limited variability over

time. In particular, the model does not confound any correlation between the time variation

of the location and the scale (known to generate unconditional skewness) for the presence

of conditional asymmetry. We also simulate a one-time break in the shape parameter: the

model correctly captures the break in the asymmetry, and the two-component specification
11Intuitively, the invertibility property ensures that the effect of the initialization vanishes asymptotically

and that the filter converges to a unique limit process. We derive the elements of ∂s(f,yt,θ)
∂f ′

t
in Appendix

B.7.
12This comes closer to the idea of defining the estimator as the maximand of the likelihood within the

invertibility region (see Blasques et al., 2018, sec. 4.2).
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properly disentangles long- and short-lived fluctuations, so that the break is tracked by the

permanent component whereas the transitory component features low variability.

3.3 Forecasts

For any draw of the parameters, θ, the filter in Eq. (3) provides the one-step ahead pre-

diction of the parameters, fT+1. Therefore, the associated forecast is p(yT+1) =
∫
p(yT+1|θ)p(θ|YT )dθ,

with p(yT+1|θ) ∼ Sktν(fT+1(θ)) being the predictive density for GDP growth. For longer

horizons, we need to address two issues: forecasting the conditioning variables and sam-

pling the scores. Due to the high persistence of the predictors, in Section 5 we keep

these fixed to their last observations.13 As for the score, we adopt a ‘bootcasting’ al-

gorithm (Koopman et al., 2018). We sample multiple h−1 dimensional block from the

estimated score vector, thus avoiding any distributional assumption on the latter. For a

given draw, the h-step ahead forecast reads p(yT+h) =
∫
p(yT+h|θ,XT+h = XT )p(θ|YT )dθ,

with p(yT+h|θ,XT+h = XT ) ∼ Sktν(fT+h(θ)).

3.4 Data and alternative model specifications

We use US quarterly data over the period 1973Q1 to 2020Q4 on economic activity, the NFCI

and its four subindices, tracking developments in the credit, risk, leverage and non-financial

leverage markets (Brave and Butters, 2012). We consider alternative models with either the

NFCI or the disaggregated components. While the risk and credit components closely track

the dynamics of the NFCI, the leverage indicators, in particular the nonfinancial leverage,

are often regarded as an “early warning” signal for economic downturns (see Appendix

F). Our framework can accommodate several features of the conditional distribution of

economic growth. Specifically, it encompasses a wide spectrum of specifications: from

a simpler Gaussian AR(2) with time-varying volatility, to the full-blown two-component

specification outlined above. In Appendix G we report the Deviance Information Criterion

and the log Marginal Likelihood for different model specifications. According to these
13This is akin to assuming a random walk specification for their law of motion. As an alternative, one

could feed predictions for the explanatory variables into the model. The latter approach produces results
very similar to the ones reported here.
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Expected Value Standard Deviation

Figure 2: Time-varying mean and variance
Note: The plots illustrate the time-varying mean and standard deviation (blue), along with the respective
long-run components, in red, and 90% credible intervals. Shaded bands represent NBER recessions.

measures: i) non-Gaussian features improves upon a Normal benchmark, ii) low-frequency

variation in the parameters are supported by the data, and iii) including financial variables

improves the model fit. Therefore, we set as our baseline specification a Skew-t model with

a permanent and transitory component for the time-varying parameters and with (two lags

of) the four subcomponent of the NFCI as exogenous predictors (Skt -4DFI ).

4 Time variation in the distribution of GDP growth
Our framework allows us to study the characteristics of the conditional distributions of

GDP growth. Fig. 2 reports the time-varying mean and volatility of these distributions,

which can be computed as (see, e.g., Gómez et al., 2007)

E[yt|θ,Y t−1] = µt + g(η)σtϱt, g(η) =
4C(η)
1− η

, (10)

Var(yt|θ,Y t−1) = σ2
t

(
1

1− 2η
+ h(η)ϱ2t

)
, h(η) =

3

1− 2η
− g(η)2. (11)

The mean moves along the business cycle, sharply contracting during recessions, while

volatility is markedly countercyclical, with peaks occurring during recessions. Focusing on

the last year of the sample, volatility sharply increases and the mean rebounds quickly,

suggesting that Covid-quarters are, at least partially, characterized as tail events. We also

report, in red, the low-frequency components, that is the moments of the distribution that
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Skewness Upside and Downside volatility

Figure 3: Time-varying asymmetry
Note: The left panel illustrates the estimated time-varying moment skewness (blue), along with its long-run
component (red). The right panel reports the upside and downside volatilities, in blue and red, respectively.
Shadings correspond to 90% credible intervals. Shaded bands represent NBER recessions.

would prevail in the absence of any transitory variation of the parameters. These capture

a fall in long-run growth, with the expected value falling from roughly 4% in the 1970s, to

roughly 2.3% at the end of the sample. The Great Moderation is reflected in a reduction

of GDP growth’s volatility: starting in the mid-1980s, transitory fluctuations in volatility

dampen down as the impact of the consecutive recessions of the 1970s and 1980s fades

away, and the long-run volatility is revised downward by about 30%.

Time-varying skewness is reported in the left panel of Fig. 3.14 This evolves in a pro-

cyclical fashion, such that substantially negative skewness characterizes recessions, whereas

expansions are marked by positively skewed distributions. Interestingly, skewness tends to

decrease in anticipation of recessions, a feature which we show to be related to the informa-

tion contained in the financial indicators, suggesting that downside risk dominates ahead

of, and during downturns. Over the long-run, skewness displays a downward trend starting

in the late 1980s, and falling markedly in the post-2000 sample. As a result, business cycle

fluctuations feature decreasing, but positive, trend-skewness until the onset of the financial

crisis in 2007. In the aftermath of the subsequent recession, this trend turns negative,
14The moment skewness can be computed numerically as Skew(yt|θ,Yt−1) =∫

R(yt−E[yt|θ,Yt−1])
3
p(yt|θ,Yt−1)dy

Var(yt|θ,Yt−1)
3
2

, where p(yt|θ,Yt−1) denotes the conditional density of the Skew-t

distribution at time t, and the (conditional) mean and variance are computed as in Eqs. (10) and (11).
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implying negatively skewed long-run conditional distributions. This signals the build-up of

vulnerabilities, resulting in the economy being increasingly exposed to downside risks.

Upside and downside volatility. In line with the “good” and “bad” volatility decompo-

sition of Bekaert and Engstrom (2017), we define “upside” (V ol+=
√
Var(yt|yt ≥ µt)) and

“downside” (V ol−=
√
Var(yt|yt < µt)) volatility as a function of ϱ (see Appendix B):

V ol+ =
1 + ϱt

2

√
Var(yt|θ,Y t−1), V ol− =

1− ϱt
2

√
Var(yt|θ,Y t−1). (12)

These two components are reported in the right panel of Fig. 3. Downside volatility spikes

during recessions, whereas upside volatility displays only modest (pro-)cyclicality. There-

fore, the countercyclicality of aggregate volatility (see, e.g., Jurado et al., 2015) largely re-

flects cyclical downside risk developments. While the financial crisis appears as an episode

of pure downside risk, the recent Covid-recession featured a spike in downside volatility in

the first half of 2020, swiftly receding in favor of upside risks in the second half.

Expected value and variance decomposition. Fluctuations in the conditional skewness

of GDP growth plays an important role in determining the dynamics of the first and

second moments of the conditional distributions (see Eqs. (10) and (11)). Thus, the (time-

varying) expected value and variance are equal to those of a standard t distribution, plus a

component which is a function of the shape parameter. The impact of the asymmetry on

the conditional mean is magnified by larger values of σt and it disappears when ϱt = 0.

Fig. 4 isolates the contribution of the asymmetry in the first and second moments. The

location (red) is remarkably stable over the sample, such that most of the fluctuations in

the expected value reflect shifts of the shape parameter (blue), with recessions (expansions)

characterized by negative (positive) skewness. The contribution of the asymmetry for

positive expected values becomes more muted during the Great Moderation, whereas the

negative drag from the asymmetry remains important during recessions. In contrast, the

effect of the |ϱt| on the second moment is less pervasive, despite deepening skewness during

recessions accounts for a non-trivial share of the increase in variance.

Eqs. (10) and (11) also highlight that procyclical variations of skewness are reflected
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Expected value Variance

Figure 4: Expected value and variance decomposition
Note: The plot shows the decomposition of the expected value and variance of GDP growth. Location
and scale are reported in red, while the contribution of higher order moments is in blue. Central moments
(black) are computed as in Eqs. (10) and (11). Shaded bands represent NBER recessions.

into a time-varying correlation between the mean and the volatility. The mean is posi-

tively affected by shifts of the shape parameter, ∂E(yt|θ,Yt−1)
∂ϱt

> 0,∀ϱt. When ϱt increases,

the variance increases (decreases) if the distribution is positively (negatively) skewed, as

∂ Var(yt|θ,Yt−1)
∂ϱt

= 2h(η)σ2
t ϱt and h(η) > 0, in that the distribution becomes more asymmetric.

Therefore, procyclical skewness reduces volatility during expansions, and increases it dur-

ing recessions. These nonlinearities in the interaction between uncertainty and aggregate

economic activity are consistent with findings in Segal et al. (2015), that ‘positive uncer-

tainty’ is associated with positive (conditional) expected growth, whereas this correlation

turns negative during contractions.

Long-run growth slowdown and the Great Moderation. We use Eqs. (10) and (11)

to assess the properties of long-run growth. Fig. 5 shows that the decreasing skewness-

trend maps into a decline of long-run growth, as roughly two thirds of this slowdown reflect

a reassessment of risk. The downward trend in long-run growth is temporarily reversed

in correspondence of the IT productivity boom of the mid-1990s, when growth is revised

upward by roughly 0.5%. This upward revision reflects, to a large extent, a shift in upside

risk to GDP growth. In the post-2000, the slowdown in long-run growth accelerates, along

with a rebalancing of risks towards the downside. After the Great Recession, long-run

growth displays a pronounced left tail, thus becoming a negative drag to long-term growth.
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Expected value Variance

Figure 5: Long-run GDP growth and volatility
Note: The left plot shows the contribution of the long-run location µ̄t (red), and of higher order moments
(blue) to the long-run expected value (black). Similarly, we decompose the total long-run variance (black)
into upside (blue) and downside (red) variance. Shaded bands represent NBER recessions.

Similarly, we decompose long-run variance into the contributions of long-run upside

(blue) and downside (red) variance in the right panel of Fig. 5. Upside variance decreases

over the Great Moderation period, and by the end of the sample it has halved with respect

to its level in the 1970s. On the contrary, the downside component has remained quite stable

throughout the sample. This highlights that the Great Moderation reflects a reduction in

upside risk not matched by an equal fall in downside risk (in line with Jensen et al., 2020).

Conditional vs. Unconditional skewness. Fig. 3 highlights that the skewness of the

conditional distribution displays a marked procyclicality: expansions are characterized by

right-skewness, whereas contractions are associated with negatively-skewed distributions.

What does this mean for the unconditional distribution of GDP growth? We answer this

question by drawing inference on the unconditional (a)symmetry of the data. We simulate

10000 alternative paths of GDP growth from the estimated model, and we compute the

associated (unconditional) skewness. The results are summarized in Fig. 6. Negative uncon-

ditional skewness estimates turn out to be 20% more likely than positive estimates, despite

conditional distributions displaying positive skewness for a large part of the sample. During

expansions upside volatility is, on average, 15% higher than downside volatility, while the

latter is almost double the former during recessions (see Fig. 3). Thus, despite expansions

being typically characterized by right-skewed conditional distributions, the occurrence of

20



1973-2020 

1973-2019 

Figure 6: Unconditional skewness
Note: The figure reports the distribution of the unconditional skewness, obtained from 10000 paths of
GDP growth simulated from the model. The vertical lines indicate the unconditional skewness estimated
over two alternative samples.

tail events is impaired by lower dispersion. Differently, recessions are characterized by

higher downside uncertainty, resulting in large negative observations being more likely. For

the 1973-2019 period, sample skewness value of -0.42 lies close to the expected value of

the empirical distribution; the sample skewness of -2.58 due to the Pandemic-recession still

lies well within the 95% interval. Results are not affected by omitting 2020 from the sam-

ple. Testing the unconditional skewness on simulated data fails to find significant evidence

of any degree of asymmetry. Therefore, significant variation of the conditional skewness

over the sample does not prevent the model from generating unconditionally symmetric

distribution of GDP growth, consistent with what we find in the data.

The contribution of financial predictors. To gauge the contribution of financial indi-

cators to the variation of the parameters, we exploit the moving average representation of

the transitory components γ̃t and δ̃t, and decompose them into a “score-driven” component

(κγ

∑t−1
j=0 ϕ

j
γsγt−j and κδ

∑t−1
j=0 ϕ

j
δsδt−j) and a component reflecting the share of variation

driven by the predictors (β′
γ

∑t−1
j=0 ϕ

j
γXt−j and β′

δ

∑t−1
j=0 ϕ

j
δXt−j), for which we highlight the

contribution of each financial index (Fig. 7). The dynamics of financial risks is the key

driver of the countercyclical movements of the dispersion of the conditional distribution.

Leverage is an important determinant of the dynamics of ϱt, and thus of skewness. In

particular, nonfinancial leverage drives most of asymmetry’s variation, consistently with
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Scale Shape

Figure 7: Predictive financial conditions
Note: The figures plot the decomposition of γ̃t and δ̃t (black) into a “Score-driven” (yellow) and “Predictor-
driven” components. Shaded bands represent NBER recessions.

the leverage-cycle narrative of Jordà et al. (2013). The build-up of household leverage is

identified as the main contributor to the increase in downside risk in the first half of the

2000s, and the subsequent deleveraging is associated with a substantial fall in downside risk.

Indicators of credit spread and credit risk mainly predict the sharp increase in downside

risk at the height of major recessions.

5 Out-of-sample evaluation
In this Section we investigate the out-of-sample forecasting performance of our baseline

model (Skt -4DFI ) against a Gaussian autoregressive model with GARCH innovations,

which has been proven to be a competitive benchmark for forecasting GDP growth (Clark

and Ravazzolo, 2015) and GDP growth-at-risk (Brownlees and Souza, 2021). We also

consider a Skew-t model without predictors, and a version including the NFCI. We re-

estimate the models every quarter over the period 1980Q1-2020Q4, and produce one-quarter

and one-year horizon forecasts; we report the latter as cumulated output growth over

four quarters. Forecasts are obtained from real-time GDP vintages, and evaluated at the

latest available release. We compare the performance of the models for the entire out-of-

sample period, as well as for the post-2000s, and for the recessive periods in the forecasting

sample.15 We assess point forecast accuracy via the mean square forecast error (MSFE).
15Recessions are considered as 3 quarters before and after NBER recession quarters. See Appendix F.
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Table 2: Forecasting performance
Skt Skt Skt Skt Skt Skt

NFCI 4DFI NFCI 4DFI
One-quarter ahead

MSFE logS
Full 0.842

(0.000)
0.817
(0.000)

0.812
(0.000)

0.122
(0.000)

0.140
(0.000)

0.060
(0.084)

Post ’00 0.809
(0.000)

0.804
(0.000)

0.793
(0.000)

0.181
(0.000)

0.211
(0.000)

0.167
(0.001)

Rec. 0.831
(0.000)

0.807
(0.000)

0.795
(0.000)

0.227
(0.034)

0.265
(0.056)

0.148
(0.269)

CRPS wQS
Full 0.964

(0.047)
0.941
(0.005)

0.952
(0.025)

0.960
(0.064)

0.926
(0.006)

0.926
(0.009)

Post ’00 0.934
(0.000)

0.912
(0.000)

0.918
(0.000)

0.919
(0.000)

0.894
(0.000)

0.891
(0.002)

Rec. 0.961
(0.191)

0.945
(0.135)

0.938
(0.112)

0.925
(0.030)

0.907
(0.030)

0.868
(0.019)

One-year ahead
MSFE logS

Full 0.720
(0.000)

0.716
(0.002)

0.694
(0.003)

0.486
(0.000)

0.585
(0.000)

0.518
(0.001)

Post ’00 0.720
(0.000)

0.696
(0.000)

0.718
(0.002)

0.849
(0.000)

0.978
(0.000)

0.970
(0.000)

Rec. 0.743
(0.063)

0.764
(0.163)

0.656
(0.044)

1.071
(0.004)

1.209
(0.007)

1.238
(0.015)

CRPS wQS
Full 0.912

(0.003)
0.902
(0.002)

0.883
(0.003)

0.778
(0.001)

0.747
(0.001)

0.766
(0.005)

Post ’00 0.843
(0.000)

0.826
(0.000)

0.820
(0.000)

0.725
(0.000)

0.703
(0.000)

0.711
(0.000)

Rec. 0.942
(0.193)

0.957
(0.316)

0.890
(0.099)

0.725
(0.008)

0.737
(0.028)

0.668
(0.016)

Note: The table reports the average forecast scores relative to the Gaussian model. Positive logS differences,
and ratios smaller than 1 for the MSFE, CRPS and wQS indicate that the column-specific model performs
better than the benchmark. The p-values for equal forecast accuracy are in parentheses. Values in bold
are significant at the 10% level; gray shaded cells highlight the best score. Out-of-sample periods: Full,
1980Q1-2020Q4; Post’00, 2000Q1-2020Q4; Rec., three quarters before and after NBER recession dates.

Density forecast accuracy is evaluated via the predictive log-score (logS) and quantile scores

of Gneiting and Ranjan (2011). For the latter we consider a) the Continuously Ranked

Probability Score (CRPS, Gneiting and Raftery, 2007), which assigns equal weight to each

quantile of the empirical distribution function, and b) a scoring rule that assigns higher

weights to the lower quantiles of the distribution function (wQS), emphasising the accuracy

in predicting outcomes in left tail.16 Similarly, we evaluate the calibration of the predictive

densities explicitly considering the calibration of the left side of the distributions, and we

asses the models’ ability to predict tail risks and time recessions. For all measures, we

report ratios (differences for the logS) with respect to the Gaussian benchmark, and we

report p-values for Diebold and Mariano (1995) test, applying Harvey et al. (1997) small

sample correction.

5.1 Point, density and downside risk forecasts

16Specifically, quantile scores are weighted by (1− α)2, where α represent the quantile.
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Table 3: Forecast performance with respect to Adrian et al. (2019)
One-quarter ahead One-year ahead

MSFE logS CRPS wQS MSFE logS CRPS wQS

Full 0.890
(0.000)

2.473
(0.000)

0.983
(0.221)

1.006
(0.599)

1.014
(0.562)

0.571
(0.000)

0.989
(0.425)

1.026
(0.672)

Post ’00 0.837
(0.000)

4.499
(0.000)

0.920
(0.000)

0.941
(0.006)

0.894
(0.098)

0.436
(0.000)

0.902
(0.046)

0.944
(0.224)

Rec. 0.877
(0.000)

8.567
(0.000)

0.962
(0.111)

0.966
(0.197)

1.073
(0.649)

1.407
(0.015)

0.948
(0.332)

0.975
(0.425)

Note: The table reports the average forecast scores of the Skt -4DFI model relative to Adrian et al. (2019).
Positive values of logS differences, and ratios smaller than 1 for the MSFE, CRPS and wQS indicate that
the Skt -4DFI model performs better than Adrian et al. (2019). The p-values for equal forecast accuracy
are in parentheses. Values in bold are significant at the 10% level. Out-of-sample periods: Full, 1980Q1-
2020Q4; Post’00, 2000Q1-2020Q4; Rec., three quarters before and after NBER recession dates.

Asymmetry and the value of financial predictors. Table 2 reports the performance

of competing models, for one-quarter and one-year ahead predictions. Simply introducing

fat tails and time-varying asymmetry improves forecast accuracy with respect to the bench-

mark specification under all loss functions. Conditioning for the four financial indices leads

to additional gains, in particular in the post-2000 and during recessions, over both hori-

zons. Compared to the benchmark, Skt -4DFI produces roughly 20% (30%) improvement

in MSFE, and 5% (12%) and 10% (25%) improvements in the CRPS and wQS, respectively,

for the one-quarter (one-year) ahead forecasts.

Comparison with Adrian et al. (2019). In Table 3 we report the comparison of the

baseline specification against the model of Adrian et al. (2019).17 Our baseline specification

is associated with better point and density forecasts, and with significant improvements,

especially in the post-2000s sample. These gains, especially during recessions, stem from

the adaptiveness of the score filter, which allows the shape parameter to promptly adapt to

turning points, thus generating longer left tails during downturns. In fact, compared to the

model of Adrian et al. (2019), the Skt -4DFI specification appears to be faster and more

precise in capturing increases (decreases) in downside (upside) risk ahead of recessions, and

it adapts to the subsequent rebounds in GDP growth in a more timely manner.

Density calibration. Table 4 evaluates the calibration of the density forecasts. Berkowitz

(2001) highlights that the Normal transform of the probability integral transforms (PITs)

of correctly calibrated predictive densities is standard Normal, and it is independent at
17For comparability, we follow exactly the procedure of Adrian et al. (2019), but re-estimating the model

using real-time vintages of GDP growth.
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Table 4: Density calibration tests
Skt Skt

AR(2) ABG 4DFI AR(2) ABG 4DFI
PITs: One-quarter ahead One-year ahead
Mean −0.352

(0.000)
−0.238
(0.028)

0.030
(0.755)

−0.941
(0.000)

−0.225
(0.248)

0.011
(0.951)

Var 0.963
(0.801)

0.983
(0.904)

1.041
(0.745)

2.009
(0.007)

2.071
(0.001)

1.290
(0.125)

AR(1) −0.026
(0.742)

0.171
(0.028)

0.120
(0.126)

RS test:
Full 2.102 1.925 0.883 4.865 2.306 1.162

Left-half 1.798 1.415 0.805 4.865 2.306 1.162

Left tail 1.074 1.166 0.501 4.757 2.306 1.162

Note: The table reports the mean and variance of the normal transform of the PITs, and the coefficient
of an AR(1) model estimated on the one-step ahead transform. We report in parentheses the p-values,
computed with HAC variances, for the null of zero mean and unit variance of the normalized forecasts, and
we test the null of no persistence for the one-step ahead. We also report Rossi and Sekhposyan (2019, RS)
calibration tests, considering the full density support (Full), the left-half, defined over the [0 0.5] support,
and the left-tail, over the support [0, 0.25]. Values in bold indicate the rejection of the null hypothesis at
the 10% confidence level. Critical values for the RS tests are obtained by 1000 bootstrap simulations.

the one-step ahead. The upper part of Table 4 reports the estimates of the mean and

variance of the normal transforms of the PITs, their autocorrelation coefficient for the

one-quarter ahead, and the p-values associated with the relevant null hypotheses. Both

the Gaussian specification and the model of Adrian et al. (2019) overestimate, on average,

upside risk one-quarter ahead, while producing overly disperse densities at the one-year

horizon. Our baseline model, on the other hand, does not display any sign of miscalibration.

The remainder of Table 4 reports the test statistics of Rossi and Sekhposyan (2019) test

for the correct calibration of the forecast distributions, evaluated over the full densities,

the left-half and the left-tail. The test rejects the null hypothesis of correctly calibrated

densities for both competing models, at both horizons. In contrast, our baseline model

delivers well calibrated forecasts for the entire density, as well as for the left part of the

predictive distributions, capturing movements in downside risk.

5.2 Tail risk predictions

Measures such as Value at Risk (VaR), as well as the Expected Shortfall (ES), are

readily obtained within our framework. ESα
t+h = α−1

∫ α

0
V aRa

t+h|tda describes the expected

growth level for yt+h < V aRα
t+h, corresponding to the (100α)th percentile of the h-step ahead

predictive distribution, whereas the Expected Longrise (EL) is the upper counterpart of

the ES. The left hand panel of Fig. 8 contrasts the ES5% and the EL95% for the Gaussian
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Expected longrise and shortfall Probability of recession

Figure 8: Expected Shortfall and Expected Longrise
Note: We report the ES and EL for α = 0.05. Probabilities of recessions are computed as the probability of
observing two consecutive negative growth forecasts over the next four quarters. Shaded bands represent
NBER recessions.

model, the Skt model without financial predictors and our baseline model, considering 10

years around the financial crisis. The Gaussian model fails to capture the building-up of

risk ahead of the Great Recession, predicting an ES around zero as the economy enters

the recession. In addition, assuming a symmetric distribution implies that a fall in the

ES is often associated with peaks in the EL. In that, the minimum ES corresponds to

the maximum EL in 2009Q2. Allowing for Skew-t innovations alleviates both problems,

delivering more conservative risk measures, with less erratic longrise figures and anticipating

the build-up of downside risk ahead of the recession. Conditioning the forecasts on financial

conditions increases the timeliness of the prediction of risk, due to the prompt discounting

of financial overheating. The prediction of the ES falls to roughly −5% in the first quarter

of the recessions, and decreases consistently until the first quarter of recovery, when it

is sharply revised upwards. Timely updates of the asymmetry parameter, especially at

turning points, induce a reduction in the mean and an increase in downside risk.18

Brownlees and Souza (2021) argue that a GARCH model provides competitive out-of-

sample forecasts for the lower quantiles of the GDP growth distribution. In Table 5 we show

that allowing for time-varying skewness produces large and significant gains with respect to
18In Q1 of 2009, the Skt -4DFI model predicts a negative mean and substantial downside risk, whereas

the Gaussian model only predicts a slightly negative growth, with a roughly symmetric assessment of the
risk surrounding this prediction; see Fig. J2, in Appendix J.
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Table 5: Tail risk scores

Skt Skt Skt Skt Skt Skt
no-X 4DFI no-X 4DFI no-X 4DFI

FZG ALS TLF

One-quarter ahead
Full 0.831

(0.040)
0.819
(0.028)

0.959
(0.111)

0.948
(0.028)

0.978
(0.246)

0.900
(0.003)

Post ’00 0.693
(0.002)

0.720
(0.003)

0.912
(0.012)

0.926
(0.038)

0.943
(0.066)

0.915
(0.040)

Rec. 0.741
(0.014)

0.651
(0.013)

0.880
(0.030)

0.850
(0.044)

0.925
(0.072)

0.821
(0.012)

One-year ahead
Full 0.241

(0.000)
0.310
(0.001)

0.397
(0.000)

0.424
(0.000)

0.692
(0.002)

0.622
(0.002)

Post ’00 0.246
(0.001)

0.371
(0.003)

0.361
(0.000)

0.398
(0.001)

0.727
(0.003)

0.600
(0.003)

Rec. 0.192
(0.000)

0.300
(0.000)

0.263
(0.000)

0.308
(0.000)

0.551
(0.000)

0.495
(0.003)

Note: The table reports the average downside tail risk scores, expressed as ratios relative to the Gaussian
model. Ratios smaller than 1 indicate that the column-specific model performs better than the benchmark.
The p-values for equal forecast accuracy are reported in parentheses. Values in bold are significant at the
10% level; gray shaded cells highlight the best score. FZG: Fissler et al. (2016) loss function; ALS: Taylor
(2019) loss function; TLF: Giacomini and Komunjer (2005) tick loss function. Out-of-sample periods: Full,
1980Q1-2020Q4; Post’00, 2000Q1-2020Q4; Rec., three quarters before and after NBER recession dates.

the Gaussian model, with improvements of 35% at the one-quarter ahead horizon, and up

to 70% at the one-year ahead. These results remains robust to different scoring functions.

We also investigate the ability of the model to predict recessions, which we define as the

probability of observing any two consecutive negative forecasts over the next four quarters.

The right panel of Fig. 8 highlights that combining financial conditions and conditional

asymmetry produces a realistic assessment of the risk of recession. Compared to the other

models, the probability of recession produced by the Skt -4DFI specification starts picking

up earlier, warning against an imminent output contraction, and it sharply recedes when

upon the end of the recession, being already below 5% in 2009Q3. Unreported Brier scores

highlight that deviating from the Gaussian assumption provides gains of around 10% in

timing recessions, and an additional 20% gain can be directly ascribed to the inclusion of

financial predictors. Overall, these results underline the importance of allowing for time

variation in the skewness of the conditional distribution of GDP growth for predicting

downside risk, both in terms of magnitude and timing.
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5.3 Robustness

Here, we provide a summary of additional robustness exercises, reported in Appendix

H. Using lagged GDP growth as additional predictor of the time-varying parameters leads

to weaker forecast performance. Explicitly accounting for parameters’ uncertainty in the

forecast delivers significant gains in terms of both point and density forecast. We show

that the results reported above are robust to the exclusion of 2020 from the sample, and

to the targeting of different GDP releases. We also show that the gains are associated with

the time variation in asymmetry, as opposed to the presence of unconditional asymmetry.

Lastly, we show that our gains are not distorted by the use of the latest vintages of the

NFCI as opposed the real-time data, only available from 2013.

6 Dissecting the Financial Condition Index
We investigate whether the predictive power of the model can be further improved by

considering the full set of 105 indicators of financial activity that constitute the NFCI.

In particular, we use the individual contributions to the NFCI, as made available by the

Chicago Fed, which measure how each individual indicator contributes to the aggregate

NFCI. We start our forecasting exercise at the beginning of the 2000s, and at each point in

time, we only consider indicators for which at least four years of data are available. Hence,

the first forecast we produced relies on about 70% of the total available indicators, and we

reach approximately 85% around the 2007-2009 recession.19

6.1 Variables selection: “shrink-then-sparsify”

A potential concern of this exercise lies in the steep increase in the number of parameters

our model needs to accommodate. We tackle this dimensionality problem through a “shrink-

then-sparsify” strategy (see, e.g., Hahn and Carvalho, 2015, and Appendix D.2). Shrinkage
19As these data are not available in real-time, we assume that at time t the set of predictors corresponds

to the quarterly average of the financial indicators from the third week of the previous quarter to the second
week of the current quarter. This approach mimics the information set available to the econometrician in
real-time, and avoids dealing with overlapping quarters. Once a new indicator enters the model, missing
observations are set to 0, while the Euclidean norm required for the sparsification step is computed on the
available data (appropriately rescaled to reflect data availability).
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is achieved by means of Horseshoe (HS) priors: bi ∼ N (0, λiτ), where the hyperparameters

λi and τ control the local and the global shrinkage of the predictor loadings, respectively.

Specifically, λi ∼ HC+(0, 1) and τ ∼ HC+(0, 1), where HC+(0, 1) denotes the standard

Half-Cauchy distribution. Unlike other common shrinkage priors (e.g. Ridge, Lasso), HS

priors are free of exogenous inputs, implying a fully adaptive shrinkage procedure. We then

apply the Signal Adaptive Variable Selector (SAVS) algorithm of Ray and Bhattacharya

(2018) to reduce the estimation uncertainty associated with the shrinkage. This data-

driven procedure specifies the sparsification tuning parameter as mi = |b̂i|−2 such that each

predictor i receives a penalization “ranked in inverse-squared order of magnitude of the

corresponding coefficient” (Ray and Bhattacharya, 2018). Thus,

b∗i = sgn(b̂i)||Xj||−2max
{
|b̂i| · ||Xj||2 −mi, 0

}
, (13)

where || · || represents the Euclidean norm of the vector Xj. Note that by applying the

sparsification step at each draw of the MCMC algorithm, the approach fully accounts for

model uncertainty, akin to the idea of Bayesian model averaging (Huber et al., 2021).

6.2 On the importance of financial indicators

Table 6 reports the forecasting performance of the sparse model, based on the b∗j coef-

ficients, against our baseline specification (Skt -4DFI ), over the full sample (2000-2020),

the 2000-2019 sample, and all the post-2000 recessions. Over the full sample, the sparse

model realizes gains of up to 10% (12%) in point (density) forecast accuracy, at the one-

quarter-ahead; these translate into gains up to 25% (20%) with respect to the Gaussian

benchmark. These performances are only slightly affected by 2020, suggesting the model is

well suited to cope with such extraordinary realizations. Looking at the cumulative sums

of the relative forecast scores it emerges that the sparse model gains advantage over the

Skt -4DFI throughout the entire sample and, especially, during the second quarter of 2020,

where the model is able to timely capture the fall in GDP and the surrounding uncertainty.

Large gains are documented during recessions, indicating that closely monitoring financial

market distress can improve the assessment of macroeconomic (downside) risk ahead and
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Table 6: Sparse forecast performance
One-quarter ahead One-year ahead

MSFE logS CRPS wQS MSFE logS CRPS wQS

Full 0.900
(0.000)

0.327
(0.000)

0.896
(0.000)

0.883
(0.000)

1.003
(0.214)

0.239
(0.075)

0.954
(0.160)

0.943
(0.310)

Pre-2020 0.899
(0.012)

0.100
(0.001)

0.915
(0.003)

0.907
(0.010)

0.940
(0.518)

0.082
(0.355)

0.964
(0.348)

0.965
(0.648)

Rec. 0.906
(0.000)

0.716
(0.000)

0.897
(0.000)

0.890
(0.002)

0.935
(0.968)

0.312
(0.807)

1.011
(0.896)

1.005
(0.972)

Note: The table reports the average forecast scores from the sparse model relative to the Skt -4DFI.
Positive values of logS differences, and ratios smaller than 1 for the MSFE, CRPS and wQS indicate that
the the sparse model performs better than Skt -4DFI. The p-values for equal forecast accuracy are in
parentheses. Values in bold are significant at the 10% level. Out-of-sample periods: Full, 1980Q1-2020Q4;
Post’00, 2000Q1-2020Q4; Rec., three quarters before and after NBER recession dates.
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Figure 9: Sparsity
Note: The panels reports the evolution of the financial predictors selected for the asymmetry and scale
parameters. Names in red indicate the 10 predictors with the highest posterior probability of inclusion
(pip); names in bold indicates predictors with the highest pip around the Global Financial Crisis.

during times of crisis, in line with Alessi et al. (2014).

We further investigate the importance of sparsity when relying on a large number of

predictors. Specifically, we compare the sparse model to a “dense” specification, where

the SAVS step is omitted. The sparse model is associated with large gains in forecasting

performance under any loss function pointing at the importance of reducing estimation

uncertainty relative to the predictors’ loadings in a large data setting (see Appendix I).

In Fig. 9 we illustrate the evolution of sparsity in the financial information set over

time, for the asymmetry and scale parameters. Financial information appears to be more

informative for capturing the time variation of the asymmetry parameter, rather than the

scale, and for both we observe a decreasing pattern in sparsity. On average, about 7.5%
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of the predictors feed into the prediction of the asymmetry parameter, while only about

2% contribute to the scale; towards the end of the sample, more than 10% of the indica-

tors inform the asymmetry parameter, while only 5% relate to σt. During the financial

crisis we document a decease in sparsity for ϱt, highlighting the importance of monitoring

developments in financial markets to gauge the severity of the Great Recession. Ranking

predictors by their average posterior probability of inclusion shows that leverage indica-

tors provide most of the information relevant to predict the evolution of the asymmetry

parameter, along with credit conditions and household debt. Credit spreads appear most

informative for the scale parameter. In line with the narrative in Adrian and Shin (2008),

during the Global Financial Crisis the size of the shadow-banking sector, and the issuance

of mortgage-backed securities, provide useful signals to gauge increasing downside risks.

7 Conclusions
The severity of the latest financial crisis and the ensuing recession has spurred the

interest of both academics and practitioners in developing models that allow us to better

understand and predict downside risk to economic growth. We introduce a framework

that allows to characterize permanent and transitory variation of the whole conditional

distribution of GDP growth, ensuring robustness to tail events and delivering competitive

out-of-sample (point, density and tail) forecasts. Our model highlights how the properties of

GDP growth have changed over the last 50 years. Downside risks have steadily increased,

adversely affecting long-run growth. The fall in volatility observed since the mid-1980s

reflects a substantial fall in upside volatility, with downside volatility remaining relatively

stable over the entire sample. Procyclical skewness emerges as a strong feature of the data,

which strongly relates to leverage developments and credit availability. When financial

markets are overheating, future economic growth becomes more uncertain, and downside

risk arises, reflecting the negative skewness of the predictive distributions of GDP growth.
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