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1 Introduction

After nearly three decades of taking the backseat, inflation has once again become a significant

concern for market participants and policymakers worldwide. This concern arises not only from

recent increases in inflation observed in many countries but also from a growing perception that

the risk of inflation spikes might have intensified. Data from the Survey of Professional Forecasters

(SPF), as shown in Figure 1, supports this perception by indicating a distinct shift in the perceived

balance of inflation risks in recent years. Before the COVID-19 pandemic, professional forecasters

anticipated a downside tilt in inflation risks. However, the most recent period reveals a pronounced

shift towards upside risks. Panel (b) illustrates the consensus subjective probabilities of professional

forecasters for various inflation outcome ranges in the first quarter of 2009 and the first quarter

of 2023. These distributions reveal that perceived risk can at times be asymmetric. Using the

distributional data from SPF projections, panel (c) presents a measure of perceived skewness,

calculated as the difference between the probabilities on either side of the modal predictions. When

assessing inflation risk, professional forecasters rarely consider it to be symmetric, and shifts in

the perceived balance of risks can be substantial.

Despite the crucial role of risk assessment in shaping professional forecasters’ views on inflation,

common modeling tools are unable to estimate real-time shifts in the balance of inflation risk from

the data. In this paper, we devise a model that allows for time-varying asymmetric risk in the

inflation process and show that it outperforms leading – symmetric – forecasting models routinely

used by forecasters. Our estimates reveal that risks to the inflation outlook vary significantly over

time in U.S. data, and exhibit strong and persistent asymmetry. Based on this evidence, we then

demonstrate that the optimal monetary strategy must take into account these fluctuations in the

direction of inflation risk.

We begin by showing that a simple subsample analysis of U.S. inflation data reveals significant

variation in the properties of inflation risk during the postwar period. Formal testing procedures fail

to reject the null hypothesis of asymmetry in the inflation process, while providing strong evidence

in favor of its time variation. Building on this preliminary evidence, we estimate the time-varying

mean, variance, and skewness of the predictive distribution of quarterly U.S. Personal Consumption
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(c) SPF’s implied skewness

Figure 1: Skewness in Inflation Expectations
Note: The top panel reports Survey of Professional Forecasters’ interval forecasts for year end. We define left tail
as the probability of inflation expectations below 1.5%, central corresponds to expectations in the [1.5%, 2.5%)
interval, whereas the right tail is defined as expectations above 2.5%. Panel (b) reports the predictive densities for
2009Q1 and 2023Q1. Panel (c) shows the implied skewness of SPF’s predictive distributions. Gray shaded areas
represent NBER recessions.

Expenditure excluding food and energy (core PCE) inflation. This enables us to provide a real-

time assessment of the dynamics of the balance of risks to the inflation outlook. Our findings

indicate that shifts in the balance of inflation risks have been substantial, persistent, and frequent

throughout the postwar period.

We model the long- and short-run components of inflation’s conditional moments, following

a trend-cycle framework. Our estimates for the time-varying mean and volatility of core PCE

inflation indicate persistent deviations of these moments from their trend components, with signif-

icant gaps emerging in the 1970s and early 1980s. In the aftermath of the Global Financial Crisis,
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our model attributes the low inflation rates (the so-called deflationary bias) to persistent negative

cyclical factors, while trend inflation remained stable around the Federal Reserve’s 2% objective.

This negative gap is largely driven by the persistently negative inflation skewness we observe start-

ing in the mid-1990s. By contrast, the recent surge in inflation is marked by substantial positive

skewness, with patterns and levels comparable to those seen in the early 1970s.

Accounting for time-varying asymmetry in the inflation process leads to significant improve-

ments in out-of-sample forecasting accuracy. Specifically, we show that our model outperforms

the unobserved component with stochastic volatility (UCSV) model of Stock and Watson (2002)

in terms of point, density, and event predictions. We observe substantial gains in forecasting the

tails of the predictive distributions, resulting in reduced forecast errors during periods of rapid

and significant inflation changes. Additionally, we find that our model’s event forecast accuracy is

comparable to that of SPF projections, a challenging benchmark, with some improvements noted

in predicting the recent surge in inflation.

We then move to examine the implications of time-varying asymmetry in the inflation process

for monetary policy. We analyze optimal monetary policy in the presence of asymmetric shocks

to the natural rate of interest within an otherwise standard New Keynesian model. If the Central

Bank adopts a suboptimal symmetric strategy aimed at stabilizing inflation around an objective,

the asymmetry in the distribution of the shocks will prevent inflation from averaging at the de-

sired level. The asymmetry introduces skewness in inflation outcomes, distorting the long-term

dynamics of inflation, the output gap, and the nominal interest rate. As a result, agents’ inflation

expectations will develop a persistent bias away from the Central Bank’s objective.

The optimal monetary strategy must take into account time-varying asymmetry in inflation

risk. Specifically, the Central Bank sets an inflation target that adjusts the modal inflation scenario

to counteract the expected direction of inflation risk.1 We refer to this optimal monetary policy

strategy as Risk-Adjusted Inflation Targeting (RAIT). Our findings suggest that the Flexible

Average Inflation Targeting (FAIT) approach – adopted by the Federal Reserve in 2020 – performs

poorly during periods of rapid shifts in inflation risk, as seen in 2021, due to its reliance on adjusting
1We use the term inflation objective to refer to the desired level of inflation, and the term inflation target as a

policy variable set by the central bank to minimize its quadratic loss function. The loss function is minimized by
steering inflation expectations close to the inflation objective.
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the target based on past inflation misses. The RAIT can be considered as a generalization of the

forecasting inflation targeting proposed by Svensson and Woodford (2004) in a environment with

time-varying asymmetric inflation risk.

We integrate the predictions of the New Keynesian model with our empirical findings to demon-

strate that the persistent negative skew in inflation following the Great Financial Crisis would have

required the Central Bank to adopt an interest rate path aligned with a modal inflation forecast

exceeding the target by approximately 30 to 50 basis points. Adopting RAIT during that period

could have eliminated the deflationary bias, which was a key factor behind the Federal Reserve’s

framework revision in 2020. In post COVID years, however, with upside risks dominating the

inflation outlook, monetary policy can address the upward bias in inflation expectations by target-

ing average modal inflation levels slightly below the desired objective. Without this adjustment,

the risk of consistently overshooting the desired inflation objective becomes a tangible concern,

potentially undermining the credibility and effectiveness of monetary policy.

Literature Review The literature on inflation forecasting has primarily emphasized the impor-

tance of accounting for slow-moving trends in the data and time-varying uncertainty (see, e.g.,

Stock and Watson, 2002; Faust and Wright, 2013; Ascari and Sbordone, 2014). Far less research

has focused on the risks of inflation or deflation.2

The paper most closely related to ours is Le Bihan et al. (2023), which introduces a new real-

time measure of underlying inflation that accounts for time-varying changes in asymmetric risks

to the inflation outlook. Their indicator is based on a multivariate regime-switching framework

jointly estimated using disaggregated sub-components of the Euro Area’s harmonized index of

consumer prices (HICP). However, because they use disaggregated data in their estimation, their

sample period is shorter than ours and does not include the previous episode of persistently elevated

inflation in the 1970s. Additionally, they do not examine the implications for monetary policy.

Only recently the attention has moved to the modelling of the whole density of inflation out-

comes (Manzan and Zerom, 2013, 2015; Lopez-Salido and Loria, 2020; Korobilis et al., 2021). In

contrast to previous work, that mostly rely on quantile regression approaches, we follow Delle Monache
2Some recent exceptions are Andrade et al. (2014); Hilscher et al. (2022).
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et al. (2024) and devise a parametric model for the whole density of US core PCE. The model

allows for asymmetric innovations, drawn from a Skew-t distribution (see Arellano-Valle et al.,

2005), and relies on the score-driven framework of Harvey (2013) and Creal et al. (2013) to set up

laws of motion for the parameters, as in Delle Monache and Petrella (2017).3 Following Stock and

Watson (2007), we allow time-varying moments to feature trend components, mainly driven by

structural policies, in line with Cogley and Sbordone (2008) and Ascari and Sbordone (2014), and

cyclical variations, aimed at capturing transitory, short-lived factors that can temporarily affect

price dynamics (“cost-push” and demand forces, as in Gordon, 1970).

We also contribute to the literature on the optimal inflation targeting (Svensson, 1997; Giannoni

and Woodford, 2004). Our work is connected to the literature that investigates risk management

approaches in monetary policy. Dolado et al. (2004); Surico (2007); Kilian and Manganelli (2007,

2008) study monetary policy under an asymmetric loss function. These models generally suggest

that the optimal policy rule may involve nonlinear terms for the output gap and inflation if poli-

cymakers have asymmetric preferences for allowing output or inflation to deviate above or below

their targets. Evans et al. (2020) argue that the zero lower bound necessitates a looser monetary

policy under uncertainty, leading to an optimal delay in policy liftoff. Bianchi et al. (2021) show

that the deflationary bias caused by the risk of recurrently hitting the Zero Lower Bound (ZLB)

constraint can be eliminated if the Central Bank adopts an asymmetric monetary strategy. This

strategy requires the Central Bank to respond more strongly to inflation deviations below target

than to those above target. In this paper, we characterize a monetary policy rule that is optimal

whether inflation risk is tilted to the downside or the upside, and whether the balance of risk hap-

pens to change abruptly. In addition, none of these papers estimate the time-varying asymmetric

risks in the data using a frontier forecasting model.
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Figure 2: The Ever-Changing Faces of Inflation
Note: Panel (a) shows US core PCE from 1960Q1 to 2024Q2. Shaded areas divided the sample into three subsamples:
1960-1999, 2000-2019 and 2020-2024Q2. Dashed lines report the sample mean of each subperiod, along with the
68% confidence interval (dot-dashed). Panel (b) and (c) reports sample densities at the low and business cycle
frequencies, respectively. Gray shaded areas represent NBER recessions.

2 Risks to price stability

Over the last 60 years, inflation has experienced substantial variability. The Great Inflation of

the 1970s seems to be in stark contrast with the slow and steady price growth in the aftermath of

the Great Financial Crisis (GFC). Recently, in the post-pandemic years, inflation has experienced

a sustained surge which triggered the fastest hiking cycle devised in the history of the Federal

Reserve. In panel (a) of Figure 2 we show the evolution of quarterly US core PCE inflation, from
3Score-driven dynamics provide, under some general conditions, optimal updates in the informational theoretic

sense (Blasques et al., 2014).
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1960Q1 to 2024Q2. In the same figure, we highlight three main subperiods: 1960 to 1999, 2000

to 2019, and 2020 to 2024Q2. Panel (b) displays the subsample distributions, derived from simple

kernel fitting to the raw data, along with the corresponding sample moments.

In the first subperiod, inflation reaches its post-war peak and exhibits significant variability.

This is reflected in a sample distribution with a mean of approximately 4%, nearly double the 2%

inflation target formally adopted in 2012.4 The volatility during this period is around 2%, and

the distribution shows a significantly positive skewness, evident from the pronounced right tail in

panel (b). However, by the turn of the century, the properties of inflation had changed markedly.

The sample density in the lower-left panel shows a clear peak with low variability, and the sample

average nearly halved to around 1.7%. This shift in the sample average was accompanied by

similar changes in higher-order moments. Inflation volatility decreased from approximately 2.2%

to about 0.6%, while the sample skewness reversed sharply, shifting from 0.85 to -0.4.5 The fitted

distributions over these subsamples show a common mode, approximately around 2%, suggesting

that the stark differences in the means are largely attributable to different level of skewness.

The final subperiod, beginning with the outbreak of the COVID-19 pandemic, marks another

turning point. The inflation distribution during this period largely resembles that of the first

subsample, both in terms of mean and volatility. Notably, the distribution exhibits negative

skewness, necessary to explain the rapid rise in inflation during 2021 and 2022, and the swift

reversal observed over the last year.6 Should inflation converge towards the target, the estimated

properties of this subsample would increasingly resemble those of the 1960-1999 period, where a

large surge in inflation is reflected in positive sample skewness. In panel (c), we further divide the

sample into expansion and recession periods.7 While both distributions tend to peak around the

2% target, recessions are characterized by greater volatility and symmetric risk, whereas inflation
4It is well documented that prior to 2012, the FOMC informally targeted inflation around 2% (see, e.g., Bullard,

2018).
5For interpretative clarity, we calibrate two Skew-Normal distributions (see, e.g., Mudholkar and Hutson, 2000)

to match the sample moments in the two subperiods. A change in skewness from 0.8 to -0.95 corresponds to an
increase in the probability of observing realizations below the mode from 0.15 to 0.75.

6The negative skewness we report highlight two facts: first, the local mean of inflation has abruptly shifted
up, thereby assigning any realization below 4% to the left-side of the sample distribution. Second, using rolling
estimates to estimates higher-order moments can lead to counterintuitive results, difficult to reconcile with the data.
We will come back to the second point in Section 3.

7Recessions are defined as all the quarter falling between business cycle peaks and trough, as reported by the
NBER US Business Cycle Dating Committee. Expansions define all the remaining quarters.
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Table 1: Time variation in higher order mo-
ments

Q Q∗ N

Homoskedastic

Asymmetry 367.31∗∗∗ 371.60∗∗∗ 4.18∗∗∗

Heteroskedastic

Scale2 369.36∗∗∗ 373.67∗∗∗ 1.50∗∗∗
Asymmetry 35.65∗∗∗ 36.07∗∗∗ 0.79∗∗∗

Note: Q is the portmanteau test, Q* is the Ljung-Box
extension (with automatic lag selection) and N corre-
sponds to the Nyblom test. Q and Q* are distributed
as a χ2

1, while N is distributed as a Cramer von-Mises
distribution with 1 degree of freedom. * p < 10%, **
p < 5%, *** p < 1%.
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Figure 3: Rolling Bai and Ng (2005) tests
Note: The figure reports rolling Bai and Ng (2005)
test statistics for US core PCE, using windows of 3, 5
and 10 years, and the the 68 and 90% critical values.

outcomes during expansions display distinct positive skewness.

Overall, the data suggest that skewness is a defining feature of inflation and, more importantly,

that the asymmetry of inflation risk seem to significantly vary over time. In Table 1, we formally

test the significance of these time-varying properties using three alternative parametric Lagrange

Multiplier tests: a Q test, an adjusted Q* test, and the Nyblom test, following Delle Monache et al.

(2024).89 The upper panel presents the results without allowing for time-varying volatility, while

the second panel incorporates time-varying volatility. In all cases, the stability of the asymmetry

is decisively rejected at the 1% significance level.

Finally, in Figure 3, we present the Bai and Ng (2005) statistics for sample skewness, along

with 68% and 90% critical values, calculated using rolling windows of 5 and 10 years. The results

provide strong evidence of time variation in sample skewness, with test statistics showing significant

fluctuations over the sample period. This includes periods of significantly positive skewness, such

as in the mid-1970s, early 1980s, and at the end of the sample, as well as significantly negative

skewness in the decade following the GFC.

These tests underscore the importance of tracking the evolution of asymmetry of inflation risk
8These tests consist of fitting the data to a Skew-t distribution, defined by parameters of location, scale and

asymmetry. A score-based test can then be used to test for the stability of the fixed parameters. We also account
for the possibility of fat tails in the distribution (see Harvey and Thiele, 2016; De Polis, 2023).

9In Appendix B we show that the test results hold for different definitions of inflation.
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in real-time, and highlights a trade-off in estimating time-varying skewness with rolling measures.

On the one hand, large look-back windows reduce the dominance of isolated outlying observations,

improving the estimation accuracy of the third moment. On the other hand, longer sample periods

reduce the sensitivity to time variation, leading to delayed detection of changes. The marked

differences in the estimates based on a 5-year or a 10-year window reported in Figure 3 uncover

significant variation in skewness, but also highlight substantial lags in its detection.

3 A statistical model of inflation risk

The evidence reported in the previous section highlights that inflation risk and uncertainty

have dramatically shifted over the last 60 years. In what follows, we now introduce a statistical

model which allows to capture these feature of the data.

Let πt = 400 log(pt/pt−1) be annualized, quarter-on-quarter (core) inflation, and assume that

at each point in time the distribution of πt can be characterized by Skew-t (Skt) distribution with

time-varying location (µt), scale (σt), and shape (ϱt) parameters:

πt ∼ Sktν(µt, σ
2
t , ϱt), (1)

where ν denotes the, time invariant, degrees of freedom. The distribution of inflation realizations

is positively (negatively) skewed for ϱ > 0 (ϱ < 0). Therefore, the underlying right- and left-risk

around the central scenario (mode), µt, can be retrieved as σt(1 − ρ) and σt(1 + ρ). It is worth

noting that this specification allows as special cases the symmetric Student-t distribution, when

ϱt = 0, the epsilon-Skew-Gaussian (Mudholkar and Hutson, 2000) for ν → ∞, and the Gaussian

density when both conditions hold. Thus, we allow for, but do not impose, asymmetric innovation

terms.

Following a long tradition in modelling the statistical properties of inflation (see e.g., Cogley,

2002; Stock and Watson, 2007; Faust and Wright, 2013), we treat the time-varying parameters as

unobserved components that can be learned in real-time from the variation in the data. Unlike
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Stock and Watson (2007), we opt for an observation-driven updating process.10 Specifically, let

δt = log(σt) and γt = arctanh(ϱt), we postulate that each element fi,t of ft = (µt|t−1, δt|t−1, γt|t−1)
′

features a permanent and transitory component: fi,t = f̄i,t + f̃i,t, which evolve as:

f̄i,t = f̄i,t−1 + aisi,t−1, (2)

f̃i,t = ϕif̃i,t−1 + bisi,t−1. (3)

Updates of the time-varying parameters are proportional to si,t−1, which is the scaled score of

the conditional distribution (as in Creal et al., 2013; Harvey, 2013). The scale score vector,

st = (sµ,t, sσ,t, sϱ,t)
′, is defined as st = St∇t, where ∇t is the gradient of the likelihood function ℓt

with respect to the dynamic parameters, and the scaling matrix St is proportional to the inverse of

the diagonal of the Information matrix, It = E [∇∇′]. Intuitively, the score vector translates the

new information contained in the latest data release, summarized by the “prediction error”, εt =

πt − µt, into an update for the time-varying parameters characterizing the predictive distribution

of inflation. In our setting:11


sµ,t

sγ,t

sδ,t

 =


√

(1+3η)(1−ϱ2t )

(1+η)
wtζt√

(1+3η)
2

(wtζ
2
t − 1)

sgn(εt)
√

(1+3η)(1−sgn(εt)ϱt)
3(1+η)(1+sgn(εt)ϱt)

wtζ
2
t

 , (4)

where ζt = εt
σt

, η = 1
ν
, wt =

(1+η)

(1+sgn(εt)ϱt)2+ηζ2t
, and sgn(·) is the sign function. In practice, updates

driven by the scaled score are (generally) guaranteed to reduce the distance between the conditional

and the true (unobserved) predictive distribution, easily allowing for non-Gaussian features.12

Consider a symmetric Gaussian environment, where η = 0, and ϱ = 0 and wt = 1 ∀t; the

location parameter, which now represents the mean of the distribution, would update according

to sµ,t = εt
σt

, and the variance following sσ,t =
(ε2t−σ2

t )

σ2
t

. That is, in line with standard Kalman

10In an observation-driven model, current parameters are deterministic functions of lagged dependent variables as
well as contemporaneous and lagged exogenous variables. In parameter-driven models, parameters vary over time
as dynamic processes with idiosyncratic innovations. See Cox (1981).

11Appendix A we provide detailed derivations for the score and updates of the time varying parameters of the
model (see also Delle Monache et al., 2024).

12See Blasques et al. (2015, 2022)
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filter learning (see, e.g., Cogley, 2002), score driven updates imply changes in the mean that are

proportional to the prediction error, with strength inversely proportional to the variability of the

data. Similarly, the variance is updated proportionally to the difference between the variability of

the prediction error (ε2t ) and the expected variability of the inflation process (σ2
t ). Allowing for

fat tails, that is wt ̸= 1, makes the updating mechanism robust to large, unanticipated prediction

errors, such that the central scenario and the associated uncertainty are less responsive to outlying

observations (see. e.g., DelleMonache and Petrella, 2017; Antolín-Díaz et al., 2024). Finally, when

asymmetry is introduced, the updating mechanism weights prediction errors differently, depending

on their sing. For example, when the conditional distribution is left skewed, parameters react more

to unexpected positive news, rather than to negative prediction errors, which are expected to be

more likely to occur. Consistently with this mechanism, the asymmetry parameter always updates

in the direction of the prediction error.

Alternative approaches to learn the entire distribution of inflation in real-time generally rely

on quantile regressions (Manzan and Zerom, 2013, 2015). However, these methods fall short of

accounting for several of the stylized facts about inflation. On the other hand, whereas the model

we propose inherits many features of common unobserved components specifications (along the

lines of Stock and Watson, 2007), it comes with the additional flexibility of allowing for skewness

in the predictive distribution of inflation. Notably, this specification admits a broader definition

of risk to inflation through the interaction of the first three moments of the distribution.

Basic Features of the Model. A defining feature of the Skew-t model in Equation (1) is the

fact that asymmetry directly affects the first two moments of the distribution. Specifically, one

can show that:

Et−1[πt] = µt + g(η)σtϱt, g(η) =
4C(η)
1− η

, (5)

and

V art−1(πt) = σ2
t

(
1

1− 2η
+ h(η)ϱ2t

)
, h(η) =

3

1− 2η
− g(η)2, (6)
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where the notation Et−1 indicates the expectation conditional on information at time t− 1. Equa-

tions (5) and (6) highlight two important features: first, when ϱ = 0, the mean and variance

collapse to the first two moments of a t distribution with 1
η

degrees of freedom, µt and σ2
t

η−1
respec-

tively; that is, the model allows for symmetric distributions. Second, asymmetry creates a wedge

between the central scenario, e.g., the mode, and the expected value. This wedge has the same

sign of the prevalent asymmetry, and it is quantitatively more relevant as the distribution becomes

more disperse, as ∂ Et−1[πt]
∂ϱt

> 0, ∀t. On the other hand, asymmetry increase the variance when

positive and decreases it when ϱt < 0.13 Therefore, procyclical variations in inflation skewness are

reflected into a time-varying correlation between the mean and volatility of the process.

Differently, we can compute skewness in closed form as (see De Polis, 2023),

Skewt−1(πt) =
g(η)ϱ [1 + η − ϱ2 (5− 2g(η)2 + (10g(η)2 − 19)η − 12g(η)2η2)]

(1− 3η)(1− 2η)
(

1
1−2η

+ h(η)ϱ2
) 3

2

, (7)

noting that this moment only depends on the asymmetry parameter and on the estimated degrees

of freedom.

Estimation. The parameters of the model and the associated conditional distribution of inflation

are estimated using Bayesian methods as in Delle Monache et al. (2024). We use minnesota-type

priors for the the persistence of the transitory components. Loadings on the score components are

Inverse Gamma distributed, with mean and standard deviation equal to 0.01 and 0.001 for the

permanent loadings, a, and 0.025 and 0.015 for the transitory loadings, b. This choice reflects the

view that transitory parameters are slower to react to news compared to the transitory components.

Furthermore, the prior ensures that the filter is invertible (Blasques et al., 2022), that is it reduces

the possibility of overshooting the updates in the direction of the (local) optimum, and assumes

conservative views on parameters time variation. Lastly, we assume an inverse gamma prior for

η. We set up an adaptive Random-Walk Metropolis-Hastings algorithm (ARWMH, Haario et al.,

1999). Credible sets for both static and time-varying parameters are obtained from the empirical

13 ∂V ar(πt|Πt−1)
∂ϱt

= 2h(η)σ2
t ϱt, and since h(η) > 0 for ν > 3, the shift in the variance will be of the same sign as

the level of the shape parameter (thus of the same sign to the level of the conditional skewness).
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distribution functions arising from the resampling. See Delle Monache et al. (2024) for a detailed

discussion.
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Figure 4: Time-varying moments of inflation
Note: The panels report mean, volatility and skewness of US core PCE. Blue lines represent total moments, red
lines correspond to long-run components only. Bands report 68 and 96% credible intervals. Gray shaded areas
represent NBER recessions.

3.1 The asymmetric dynamics of inflation risks

Figure 4 displays the estimated time-varying moments. We report in black the total moment

(e.g., computed using the total parameters, ft = f̄t + f̃t), whereas the persistent components (e.g.,

setting ft = f̄t) are in green. The model reveals significant time variation across all moments. The

time-varying mean (panel (a)) reflects the well-documented trend in inflation, which rises in the
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mid-1960s, declines from the early 1980s, and stabilizes near a 2% target by the mid-1990s (see,

e.g., Stock and Watson, 2016). The recent inflationary episode is marked by a sharp increase in

both average expected inflation and its long-term component, with a noticeable reversal in the last

few observations. Inflation volatility (panel (b)) peaks in the mid-1970s, remaining high until the

late 1980s, and is well-contained until early 2020, when it sharply increases starting in Q2. Unlike

the mean, inflation volatility exhibits clear cyclicality, rising significantly during recessions.

The skewness estimates (panel (c)) indicate moderate negative skewness in the 1960s, with

increasing upside risks from the late 1960s, peaking in the late 1970s, and then declining from the

early 1980s. Upside risks persist until the mid-1990s, when the skew shifts to negative. Downside

risk dominates until the post-COVID inflationary episode, except for the period before the GFC,

where risks are balanced. The model captures a marked increase in negative skewness during

the pandemic, followed by a rapid rise in upside risk. By the end of 2020, substantial upside

risks emerge, reaching levels comparable to those seen during the Great Inflation of the 1970s

by mid-2021.Notably, the risk distribution during the latest inflationary episode closely resembles

the environment of the mid-1970s, both qualitatively and quantitatively, while the low and stable

inflation period before COVID mirrored the stable inflation era of the 1960s. It is worth noticing

that, contrary to the mean, where the transitory components remains highly persistent, skewness

shows far less transitory deviations. This is due to a lower estimate for the autocorrelation of the

transitory component of asymmetry compared to that of the location, but also to smaller learning

rates, which make the former less sensitive to noisy prediction errors.14

Following Equation (5), panel (d) presents the decomposition of expected inflation into the

location (the most likely expected outcome) and the tilt induced by asymmetric risks around it,

ψ. Inflation risk significantly influences inflation expectations, introducing a substantial upside

bias during the high inflation periods of the 1970s and the post-COVID era. Moreover, negative

skewness contributed to an downward bias between 30 and 50 basis points in expected inflation

during the decade leading up to COVID.

Whereas more is known about inflation time-varying mean and variance (see, e.g., Stock and

Watson, 2002), our model offers novel insights on the dynamics of inflation skewness. We compare
14See Table 7 in Appendix C.
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Figure 5: Model-based vs rolling measures of skewness
Note: The figure reports cross-correlations between data-based and model-based measures of inflation skewness.
We report in blue the correlation between rolling quantile skewness and the estimated coefficient of asymmetry,
and in green the correlation between rolling sample skewness and the conditional skewness produced my the model.
Gray shaded areas represent NBER recessions.

our model-based measures of skewness (e.g., sample skewness, st and the asymmetry parameter,

ϱt) against rolling estimates solely based on data. Panel (a) in Figure 5 compares sample skewness

against a a 5-year rolling Pearson’s skewness, sst, reported in green. Despite patterns evolve

similarly, sst is a noisier measure of skewness, due to its sensitivity to individual observations. In

the bottom figure, we compare estimates of ϱt against a robust quantile-based measure of skewness,

qst.15 The impact of outliers is evident, especially with large negative data points from the second

quarter of 2020, which continue to distort post-2021 qst estimates. In contrast, model-based

skewness estimates are less affected by extreme values, due to the robust updating mechanism.

Furthermore, rolling estimates assume constant skewness within the sample window, which makes

them slow to adjust, particularly during major inflation shifts, presenting a significant challenge

for real-time risk assessment. Differently, our model’s skewness estimates are updated in real-time

with each new inflation release. While all measures generally align in capturing underlying risk

and its evolution, panel (b) shows that our skewness measures incorporates changes in inflation

quicker, leading by an average of two quarters – a clear advantage for real-time monitoring of

inflation risk.
15Notice that, incidentally, both measures are bounded between -1 and 1.
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Figure 6: Risk across different inflation measures
Note: The panels report the full moment median estimates volatilities (a) and skewness (b) for different measures
of inflation. Black lines indicate estimates for core PCE. Other inflation measures we consider are: GDP deflator,
headline PCE, headline CPI and core CPI. Gray shaded areas represent NBER recessions.

Other inflation measures The evidence reported so far is based on data for core PCE, which is

the measure preferred by the FOMC to gauge price stability. Nevertheless, estimating the model

on different inflation measures lends support to a generalization of our in-sample findings. We

consider four additional inflation measures: the GDP deflator, headline PCE, and headline and

core CPI. Figure 6 shows the estimated dynamics of inflation volatility and skewness across the

different measures, highlighting in blacks that of core PCE. Two comments are in order. First,

the dynamics of the two moments is extremely similar for all measures. With varying magnitudes,

volatilities spike around recessions, and remain persistently high soon after. Skewness follow

humped-shape patterns in the 1970s and 1980s, then moving downward since the 1990s, remaining

negative until the pandemic period. Second, it’s important to note that among all these measures,

it emerges that core PCE is the least “risky”, with both volatility and skewness exhibiting the least

amount variation.

3.2 Forecasting

Here, we assess the out-of-sample forecasting performance of our model, with a focus gaug-

ing the added value of accounting for time-varying skewness. Specifically, we set up a real-time

forecasting exercise where for each inflation vintage we produce up to twelve-step ahead forecasts
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Table 2: Out-of-sample comparison

h = 1 h = 2 h = 3 h = 4 h = 8

MSFE 0.835
(0.016)

0.854
(0.021)

0.861
(0.031)

0.859
(0.010)

0.951
(0.004)

CRPS 0.936
(0.012)

0.939
(0.011)

0.934
(0.002)

0.927
(0.004)

0.966
(0.002)

CRPS decomposition

Right 0.926
(0.019)

0.932
(0.018)

0.931
(0.010)

0.934
(0.013)

0.965
(0.071)

Left 0.949
(0.002)

0.940
(0.006)

0.937
(0.001)

0.923
(0.001)

0.962
(0.002)

Center 0.933
(0.004)

0.942
(0.011)

0.935
(0.002)

0.923
(0.005)

0.971
(0.004)

Event Forecasts

πt+h < 1.5 0.945
(0.015)

0.940
(0.005)

0.931
(0.001)

0.950
(0.026)

0.960
(0.040)

πt+h > 2.5 0.910
(0.031)

0.969
(0.089)

0.960
(0.036)

0.966
(0.032)

0.986
(0.132)

1.5 ≤ πt+h ≥ 2.5 0.939
(0.013)

0.947
(0.009)

0.947
(0.016)

0.981
(0.176)

0.940
(0.001)

Note: The table report the relative performance of Stock and Watson (2002) UCSV model against our Skt model.
Results are reported in ratios, with our model being at the numerator; values smaller than 1 imply superior predictive
accuracy of the SKt model. The out-of-sample period runs from 2000Q1 to 2024Q2. Values in bold are significant
at the 10% level.

for the whole density of core PCE inflation, starting from 2000Q1. We evaluate the forecasting

performance of the model against the UCSV model of Stock and Watson (2002) which represents

a solid benchmark model, widely employed by policy institutions to predict inflation outcomes.16

We compare the two models in their ability to produce accurate point, density and event forecasts.

That is, we evaluate the mean squared forecast error (MSFE) for point accuracy; we measure den-

sity forecasting ability by means of Gneiting and Ranjan (2011) weighted quantile scores. These

scoring rules allow us to evaluate the overall density forecast accuracy using the Continuously

Ranked Probability Score (CRPS), a loss function that compares the predictive distribution func-

tion to a step function which moves from 0 to 1 on the realization point (“perfect forecast”),17 but

also to focus on the prediction of specific parts of the distribution, where we focus on the right

and left tails, and the central body of the predictive densities.18

16We implement the Bayesian version following Chan (2013).
17The CRPS can be interpreted as a generalization of the mean absolute error for density forecasts.
18Left tail forecasts are defined up to the 25th quantile. Similarly, the right tail considers above the 95th quantile.

The remaining quantiles characterize to the center of the distribution.
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Table 3: Event forecast comparison against SPF

πQ4
t ≤ 1.5 πQ4

t ≥ 2.5 1.5 ≤ πQ4
t ≤ 2.5

h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4

1.196 0.892 1.159 0.893 0.853 0.164 0.335 0.599 1.177 0.895 1.327 1.125

Note: The table reports the ratio of the Brier score of our Skt model over the SPF’s for event predictions. The
target variable is Q4-over-Q4 core PCE. The evaluation sample runs from 2007Q1 due to SPF data availability.

Results for the comparison are reported in Table 2, where for each loss function and forecast

horizon we report the ratio of the score achieved by our model over that of the UCSV; values

smaller than unity point at a superior accuracy of our preferred model. We report p-values for

Diebold and Mariano (1995) test in parentheses.

The results strongly support the superiority of our model against the benchmark, across all

horizon and forecast exercises. Gains in point forecast range from 25% for short-horizons to 7$

over the medium run. Smaller, yet sizable, gains are observed in CRPS scores. Notably, our

model delivers improvements up to 8% in upside risks forecast. Overall, we uphold the relevance

of accounting for inflation skewness as a way to improve forecasting accuracy. Nonetheless, the

UCSV model not only does not feature skewness, but it also overlooks the presence of fat tails.

To avoid mistaking gains coming from modelling inflation skewness from those related to fat tails,

we reproduce the same results comparing our model against a specification that does not allow for

any asymmetry, similarly to Delle Monache and Petrella (2017). Results reported in Appendix C

validate our claim that modelling skewness is a key step to improve model fit and forecasting

accuracy for inflation.

3.3 Event forecast and comparison with SPF

In the bottom part of Table 2 we also compare the ability of the models to produce events

forecasts. Specifically, we use the Briers score to evaluate predictions of the events that πt+h is

lower than 1.5%, greater than 2.5% or that it falls within these thresholds. Again, our model

provide improvements over the benchmark UCSV model, especially over the short-horizon.

We also compare our event forecast predictions against consensus. For this exercise we target
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Figure 7: Event forecasts
Note: The top panel report the interval forecasts produced by the Skt model. We define left tail as the probability
of inflation expectations below 1.5%, central corresponds to expectations in the [1.5%, 2.5%) interval, whereas the
right tail is defined as expectations above 2.5%. Panels (b) and (c) report a comparison of the two-step-ahead
predicted probability of Q4-over-Q4 inflation being below 1.5% and above 2.5%, repsectively; yellow shaded region
represent the events. The sample runs from 2007Q1 to 2023Q4. Gray shaded areas represent NBER recessions.

Q4-over-Q4 core PCE, πQ4
t , starting in 2007Q1, to match SPF data. First, in panel (a) of Figure 7

we show the interval predictions produced by our model, as reported in the top panel of Figure 1.

Upon visual inspection, it seems that our model is able to produce interval predictions that are in

line with consensus. In the bottom panels, we also plot the evolution of the predicted probability

of πQ4
t being below 1.5% (panel (b)) or above 2.5% (panel (c)). These figure show that our model

produces, on average, timelier assessments of the event probabilities. Strikingly, the Skt model

detects little to no probability of overshooting the 1.5-2.5% interval for the whole period between

the GFC and the post-pandemic bout of inflation, which is captured with greater precision.

We summarize a formal evaluation of these predictions in Table 3, where we report ratios of
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Brier scores for the Skt model over the SPF for the three events and for up to four-step-ahead

predictions.19 Overall, the table show that our model and consensus deliver comparable accuracy,

with the exception of P
(
πQ4
t+1 > 2.5%

)
, where our model appears to produce timelier assessments

to these probabilities (see Figure 7 panel (c)). Notice, however, that the ratios reported in the

Table are computed with a small number of observations – due to SPF data availability.

4 Implications for Monetary Policy

The deflationary bias observed since the Great Financial Crisis has prompted policymakers to

renew their commitment to maintaining price stability. Over the last two years, two major central

banks, the Federal Reserve and the European Central Bank, have reviewed their approaches to

keeping inflation close to a target level of about 2% over the medium term. The major update

from these strategy reviews was a shift from a symmetric inflation target –where central banks

react equally to inflation above or below the target (the so-called “bygones-be-bygones”)– to an

asymmetric target. Under this approach, for example, the policymaker allows inflation to run

higher than the target after periods of below-target levels (see, e.g., FED, 2021; Reichlin et al.,

2021). Within this new policy framework, the optimal monetary policy response to inflation

fluctuations needs to account for the evidence of asymmetric risks.

In this section, we formally examine the implications of asymmetric macroeconomic risk for

monetary policy. We begin by analyzing optimal policy within the foundational three-equation

New Keynesian (NK) DSGE model, accounting for asymmetric risk. Following this theoretical

exploration, we transition to an empirically focused framework, where real-time tracking of time-

varying skewness in risk is translated into a corresponding asymmetric adjustment in monetary

policy strategy.
19Notice that for h = 1, the prediction uses only out-of-sample values. As h approaches 4, up to 3 observed data

points are used in the computation of Q4-over-Q4 inflation.
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4.1 Skewed risk in a simplified NK model

The textbook NK model (e.g. Clarida et al., 1999; Woodford, 2003; Galí, 2008), log-linearized

around its unique steady-state equilibrium, results in the following equations:

yt = Etyt+1 − ς−1
(
ît − Et π̂t+1

)
,

π̂t = κ(yt − y⋆t ) + β Et π̂t+1,

ît = π̂t + ϕπ (π̂t − π̂⋆
t ) ,

y⋆t = ωα̂t,

where ς is the inverse of the elasticity of intertemporal substitution, β the discount factor, and ω

and κ are convolutions of the deep parameters.20 Output and the fully-flexible price output are

considered in deviation from steady state, whereas the inflation rate is defined π̂t = πt − π, where

π = 2% (annualized) – consistent with the Federal Reserve objective for the annualized inflation

rate, and the nominal rate as ît = it − (r + π). The Central Bank decides upon a target central

scenario for inflation, π̂⋆
t , and reacts to any deviation of inflation from this target, where ϕπ > 0

measure the strength of the interest rate response.

To simplify the derivations, we assume that the TFP shock is iid, and we allow its distribution

to belong to general class of (potentially) asymmetric distributions, such that α̂t ∼ F (µα, σα, ϱα,t),

where µ is the mode, σ is the scale parameter and ϱα,t measures the asymmetry of the mass about

the mode, such that the distribution features positive (negative) skewness when ϱ > 0 (ϱ < 0).21

Consistent with our empirical findings, we assume that the asymmetry is time varying.22 In what

follows we will assume µα = 0, i.e. the most likely outcome for the shock, ex-ante, is zero. Yet,

for ϱα,t ̸= 0, we have Et [α̂t+1] = ψα,t, which is positive (negative) for ϱα,t > 0 (ϱα,t < 0), that is

the presence of asymmetry gives rise to a wedge between the central scenario and the expected
20In a standard textbook NK model ω = (1 + η)/(η + ς) and κ = (1 − ϕ)(1 − ϕβ)(ς + η)/ϕ, η is the inverse of

Frisch elasticity of labor supply and ϕ measures nominal price stickiness.
21The notation F (µ, σ, ϱ) indicates a general class of location-scale skew distributions (Arellano-Valle et al., 2005).

Densities belonging to this class are closed under affine transformations due to the location-scale invariance of the
skewness (for positive slopes), and any symmetric distribution is allowed as a special case when ϱ = 0. In this latter
case, µ (also) becomes the mean, but σ does not necessarily indicates the standard deviation, as fat tails might be
allowed. The Skew-t distribution used in the previous section belongs to this general class.

22We simplify the model assuming that the scale of the distribution, σα, is fixed.
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value. Specifically, ψ(σα, ϱα,t) is a monotonically increasing function of ϱα,t which tilts the mean

forecast away from the modal forecast in the direction of the skewness; the wedge between the two

becomes larges as the distribution becomes more dispersed.

After some manipulations, we can rewrite the model as:23

xt = Et[xt+1]− ς−1 (π̂t + ϕπ (π̂t − π̂⋆
t )− Et[π̂t+1]− r̂⋆t ) , (8)

π̂t = κxt + β Et[π̂t+1], (9)

where r̂⋆t = ςω Et[∆α̂t+1] denotes the natural rate of interest, and xt = yt−y⋆t is the output gap. It

follows that movements of the natural rate of interest are entirely driven by changes to the moments

of the the TFP shock, i.e. r⋆t ∼ iidF (µ⋆, σ⋆, ρ⋆t ), where µ⋆ = ςω Et [ψα,t+1], σ⋆ = ςωσα, ρ⋆ = −ρα,t.

Note that E [r⋆t ] = µ⋆ + ψ⋆
t = ςω (Et [ψα,t+1]− ψα,t), such that Et [r

⋆
t ] ̸= 0 if Et [ψα,t+1] ̸= ψα,t.

To recover the unique equilibrium allocations, we guess that a solution for output gap and

inflation can be written as a linear function of r⋆t and π⋆
t , where the latter is determined by the

optimal policy of the Central Bank. We use the method of undetermined coefficients to solve for

the unique solution of the system. In this model, macroeconomic outcomes inherit the properties

of the stochastic shock, in that Et[xt+1] and Et[π̂t+1] are not necessarily equal to zero, since the

technology shock may be asymmetric. Therefore, any solution of the system is characterized by

the following conditions:

 Et [xt+1]

Et [πt+1]

 =
1

ς + κ (1 + ϕπ)


(

ς+κ
ϕπκ

+ 1
)
(1− β)

ς+κ
ϕπ

+ κ

Et

[
r⋆t+1 − ϕππ

⋆
t+1

]
. (10)

Assume now that the monetary authority chooses the forward-looking, time-varying inflation

trend,
{
π̂⋆
t+h

}H

h=0
, to minimize the symmetric loss function: L = E[π̂t+1]

2.24 The optimal monetary

policy commands that the Central Bank set π̂⋆
t+1 so that E[πt+1] = π. Equation (10) highlight

that, in order to meet the symmetric target, monetary policy needs to offset the asymmetry of
23A full derivation of the solution to the model is available in Appendix D.
24The effects of announcing a new monetary policy strategy is studied by Hoffmann et al. (2022); Coibion et al.

(2023)
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macroeconomic risks.25 Hence, the optimal policy requires that

π̂⋆
t+1 = −ϕπ (µ

⋆ + ψ⋆
t ) .

If no shocks occur, r̂⋆t = 0 and by announcing π̂⋆
t ̸= 0, the Central Bank drives inflation away

from the objective π̄. On the other hand, when shocks are non-zero, average inflation will be on

target. Therefore, even if the Central Bank has a symmetric mandate, optimal policy requires

an asymmetric strategy, i.e. a risk-adjusted inflation targeting (RAIT), which adjusts the central

scenario by the amount necessary to offset the effect of expected risk asymmetry.

It is also worth noting that the RAIT strategy holds some substantial differences compared to

other available strategies, such as the flexible average inflation targeting (FAIT, see Mertens and

Williams, 2019). For example, FAIT only requires corrections for past mistakes,

π̂⋆
t = −(1− ρ⋆)π̂t−1 + ρ⋆π̂⋆

t−1, (11)

where the parameter ρ determines the look-back period. Differently, RAIT is purely forward-

looking, requiring to produce a prediction of the balance of risks to future inflation.

4.2 Operationalizing the framework

The framework laid out above considers the optimal solution for a classical one-period prob-

lem. In practice, however, a one-period target might lead the Central Bank to overreact to single,

extreme predictions, or require infeasible policy actions. Therefore, here we present an opera-

tionalizable version of the RAIT, where the monetary authority targets a forward-looking inflation

average, computed over multiple periods.26 The strategy still assumes a symmetric average infla-

tion target with a loss function defined by the squared deviation of the forward-looking average

inflation, πA
t , from the pre-specified objective π: Et

(
πA
t − π

)2, where πA
t =

∑HLead

j=1 πt+j. The

25Note that the output gap as well is zero in expectations.
26The loss function can be easily extended to allow for past mistakes as well. This requires defining average infla-

tion overHLag+HLead periods: πA
t =

∑HLead

j=−HLag+1 πt+j =
HLag

HLag+HLead
πL
t +

HLead

HLag+HLead
πF
t , where πL

t and πF
t denote

the past and future components of average inflation, defined as πL
t = 1

HLag

∑HLag

h=1 πt+1−j , πF
t = 1

HLead

∑HLead

h=1 πt+j .
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optimal policy requires Et

(
πA
t

)
= π.

If πt+h ∼ N
(
µt+h, σ

2
t+h

)
, the risk around the central scenario is symmetric, and the optimal

policy implies that the Central Bank sets interest rates consistent with the central scenario, so

that
1

HLead

HLead∑
h=1

µt+h|t = π. (12)

However, when inflation risks are not symmetric, that is πt+h ∼ F (µt+h, σt+h, ϱt+h),27 the opti-

mal policy action need to account for such risks. Hence, for Et[πt+h] = µt+h|t + ψ
(
σt+h|t, ϱt+h|t

)
,28

when the modal forecast deviates from the expected forecast the Central Bank is expected to

target:
1

HLead

HLead∑
h=1

µt+h|t − π︸ ︷︷ ︸
Optimal MP bias (π⋆

t )

= − 1

HLead

HLead∑
h=1

ψ
(
σt+h|t, ϱt+h|t

)
︸ ︷︷ ︸

Expected risk offset

. (13)

Optimal policy requires the Central Bank to set the interest rate so as achieve a central scenario

that deviates from the target (“optimal monetary policy bias”) by the amount necessary to make

up for the presence of asymmetric risks over the forecast horizon. When risks around the central

scenario are unbalanced (i.e., ϱt+h|t ̸= 0 for some h), the Central Bank should target modal forecasts

that overshoot (undershoot) the target when there is negative (positive) skewness in inflation risk.

Failing to reflect the negative (positive) skew in inflation risk makes overshooting (undershooting)

the target more likely leading to persistent deviations for the target.

Notice that, by setting HLead = 1, we return to the setting described above. In that setting, the

optimal bias, π⋆
t+1, captures the asymmetry of macroeconomic risks inherited by the risk associated

with the stochastic shock. In reality, however, macroeconomic risks arise from multiple shocks,

with varying properties over time. Equation (13) highlights that the optimal policy under an AIT

objective only requires the Central Bank to produce real-time forecasts of inflation risk.
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Figure 8: Real-rime expected risk offset
Note: The figure reports the real-time expected risk offset, as reported in Equation (13). We consider three HLead

values of 4, 8 and 12 quarters. The sample goes from 2000 Q1 to 2023 Q4. Gray shaded areas represent NBER
recessions.

5 Inflation risk and the design of AIT strategies

In this section we show how estimates of inflation risks produced by our model can be exploited

by the monetary authority to design an appropriate approach to AIT.

A well-designed AIT framework requires two key elements: first, the desired inflation objective,

π⋆, that is the inflation level that the Central Bank wants to achieve, and second, the definition

of “average inflation”. Specifically, the latter entails determining a look-back and a look-forward

period, over which the Central Bank assesses development in inflation (i.e. HLag and HLead,

respectively). While there is a wide consensus among Central Banks to set the inflation objective

to (or close to) 2% (see Bernanke, 2003), less attention has been devoted to the careful choice

and the implications of different periods over which the average target is evaluated. Intuitively,

however, a short look-back period is undesirable, as it would require the Central Bank to implement

policies that can be unfeasible or too aggressive, whereas it is expected that the look-forward period

account for the lags in the transmission of monetary policy. Based on evidence in (? and ?), a

look-forward period of 2 to 3 years seems an appropriate choice to capture the full effects of policy
27Asymmetric densities have been widely used to communicate future inflation outlooks since the mid-1990s (see,

e.g., Wallis, 1999). See (Wallis, 2014) for an overview of the history of asymmetric (two-piece) distributions.
28For the distribution considered in this paper, ψ = g(η)σtϱt, see equation Equation (5).
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adjustments.

The FAIT approach in Equation (11), for example, rests on the assumption that past mistakes

are sole guidance to inform the policy action, therefore setting HLead = 0. The strength of recent

mistakes are regulated by the coefficient ρ⋆, which implicitly reflect the choice of HLag,29 On the

other hand, the RAIT framework we introduce is based on the idea that what really matters for the

conduit of monetary policy are the expected risks that can hinder a smooth approach of inflation

to its target value. That is, HLag = 0, but HLead needs to be set in line with a realistic forecast

horizon. In Figure 8 we show the evolution of the expected risk offset (see Equation (13)) estimated

in real-time with our Skt model. We consider look-ahead periods of four, eight and twelve quarters.

Regardless of HLead, all series suggest similar patterns, with minimal deviations required by shorter

look-ahead periods emerging only during periods of substantial inflationary pressures. This results

is mainly due to the fact that transitory deviations of the skewness are weakly autocorrelated, such

that the predicted level of risk quickly reverts to its permanent component. The model suggests

that a positive make up offset of 20 to 40 basis points was necessary to keep inflation at target in

the aftermath of the GFC. The failure to target a modal scenario slightly above the 2% inflation

objective could explain the persistent deflationary bias observed in realized inflation prints. In the

post-COVID years, the model advises that large negative offsets might be required going forward.

The implicit inflation targets required by the FAIT and RAIT approaches are compared in

Figure 9. Specifically, we compare the requirement form the FAIT approach, which is by definition

a smooth weighted average of historical deviations from the target and the current inflation miss.

For the RAIT, we produce a similar smoothed target, but using the real-time average expected

levels of risk, with a look-ahead periods of one year. We opt for a longer look-back period of two

years for the smoothed averages. The policy recommendation provided by the two approaches turn

out to be strikingly different.

First, FAIT always require more aggressive policies. Under FAIT, the Central Bank is required

to target expected inflation levels around 2.4% in the decade following the GFC, due to the per-

sistent undershooting of the target. The large misses in the post-pandemic era, on the other hand,

call for a massive undershooting of the objective, which seem unrealistic to achieve. Differently,
29For example, a smoothing coefficient of 0.95 corresponds to a look-back period of about 2 years.
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Figure 9: Inflation target under FAIT and RAIT
Note: The figure reports smoothed, real-time estimates of the implicit inflation target required under the FAIR and
RAIT approaches. The sample goes from 2000 Q1 to 2023 Q4. Gray shaded areas represent NBER recessions.

the RAIT, being a purely forward-looking rule based on risk, prescribes inflation targets that are

more stable and realistic in size. In the post-GCF, RAIT would have required less aggressive

monetary policy actions, consistent with a target expected inflation level of 2.2%. Intuitively, if

inflation projections are skewed towards the downside, the monetary authority which incorporates

this expectation in the policy response is better off by targeting a central scenario that is above

the desired target by a factor proportional to the expected risk in the forecasting period. In recent

years, the forward-looking nature of the RAIT requires an undershooting of the objective by just

0.4% (against the 1.2% commanded by the FAIT), as expected risks are expected to recede.

Are mistakes predictable? Information about next period’s miss can be extracted from our

real-time density forecasts. Figure 10, panel (a) reports the predicted probability that next inflation

print will be lower than an year before (yellow-shaded areas). The figure compares this probability

with a counterfactual probability where the policymaker disregards the asymmetry in risk (e.g.,

setting ϱt = 0). Ignoring the asymmetry in risks tends to underestimate the probability of lower

prints in periods of downside risk, such as after the Great Recession. When our model quickly

updates the sign of the skewness, around 2022, the likelihood of lower prints becomes systematically

smaller when asymmetry is accounted for.

Hence, monitoring the asymmetry of inflation risks in real-time is an essential tool for accurately
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Figure 10: Expected asymmetry as predictor of target misses
Note: The top panel report the real-time assessment of the probability of increasing the past mistake components of
the optimal monetary policy bias, defines as Pt (πt+1 < πt−3). The dotted lines reports a counterfactual probability
computed assuming symmetry of the predictive distribution, that is Pt (πt+1 < πt−3|ϱt = 0). Yellow shaded bands
represent period when realized inflation was higher than πt−4. Panel (b) show the correlation between the past
mistakes components and the forward-looking, filtered asymmetry estimated in real-time, ϱt. The sample goes from
2000 Q1 to 2023 Q4. Gray shaded areas represent NBER recessions.

gauging the costs of under/overshooting optimal policy prescriptions. In the bottom panel, we

further show that tracking asymmetry in real time can further inform about the expected mistakes.

When downside (upside) risk dominates, prolonged periods of negative (positive) inflation gaps

are more likely. Even if the Central Bank were to ignore future risk asymmetry (i.e., HLead = 0),

tracking inflation skewness can still provide insight into the sing an magnitude of next periods

inflation misses.

6 Concluding remarks

Central Banks’ mandates of price stability are strenuous and complex tasks, that require careful

calibration of policy interventions and a consistent assessment of the risks associated to them.

Among these risks stands the risk associated with future realizations of inflation, that implicitly
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define the target of the price stability mandate.

We show that the process describing the dynamics of core PCE in the postwar period features

frequent and persistent changes to the balance of risks. We propose a model to track the whole

distribution of inflation in real-time which retains most of the desirable features of the trend-

cycle model of Stock and Watson (2002), but further allows for time variation in the skewness of

the predictive distributions of the inflation process. We show that inflation skewness has varied

substantially over time, shifting from being positive in the 1970s and 1980s to negative from 1990s

until the recent bout of inflation in the post-COVID period. Furthermore, we highlight that such

model enhancement is crucial to improve point, density and event forecasts.

In the context of the recently adopted average inflation targeting, we argue that the optimal

conduit of monetary policy ought to account for these persistent changes in the prevalent risks

to the inflation outlook. Specifically, in an AIT framework with a forward-looking component,

optimal policy is required to make-up for the perceived tilt in the balance of risks. Failure to

accommodate the presence of these risks might lead to prolonged periods of missing the infaltion

target.
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A Score-driven framework

A.1 Score derivations

The scaled score st is a non-linear function of past observations and past parameters’ values.

For ℓt = logD(θ, ft) being the Skew-t of Gómez et al. (2007), yt|Yt−1 ∼ Sktν(µt, σ
2
t , ρt), the log-

likelihood takes the form

ℓt(rt|θ,Ft−1) = log C(ν)− 1

2
log σ2

t −
1 + ν

2
log

[
1 +

ε2t
ν(1 + s(εt)ρt)2σ2

t

]
, (14)

log C(ν) = log Γ

(
ν + 1

2

)
− log Γ

(ν
2

)
− 1

2
log ν − 1

2
log π,

where Γ(·) is the Gamma function and ν > 3 are the degrees of freedom. Differentiating (14)

with respect to location, scale and asymmetry we obtain the gradient vector ∇t =
[
∂ℓt
∂µ
, ∂ℓt
∂σ2

t
, ∂ℓt
∂ρt

]′
.

Recall that εt = yt − µt, ζt = εt
σt

and let

f(µt, σ
2
t , ρt) = 1 +

ε2t
ν(1 + s(εt)ρt)2σ2

t

=
ν(1 + s(εt)ρt)2σ2

t + ε2t
ν(1 + s(εt)ρt)2σ2

t

To avoid overburdening the notation, in what follows ∂f(x)
∂x

= f ′
x and a = −1+ν

2
. The score with

respect to the location parameter reads

∂ℓt
∂µt

= wt
ζt
σt
, with wt =

ν + 1

ν (1 + s (εt) ρt)
2 + ζ2t

.

Proof. Define

g(µt) = a log f(µt, σ
2
t , ρt),

such that ∂ℓt
∂µt

= ∂g(µt)
∂µt

= a
f ′
µt

f(µt,σ2
t ,ρt)

. For

f ′
µt

= − 2

ν(1 + s(εt)ρt)2σ2
t

εt,
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it follows:

∂ℓt
∂µt

=
1 + ν

2

2

ν(1 + s(εt)ρt)2σ2
t

· εt ·
ν(1 + s(εt)ρt)2σ2

t

ν(1 + s(εt)ρt)2σ2
t + ε2t

=
(1 + ν)

ν(1 + s(εt)ρt)2σ2
t + ε2t

εt

= ωt
ζt
σt

.

The score with respect to the squared scale parameter reads

∂ℓt
∂σ2

t

=
(wtζ

2
t − 1)

2σ2
t

.

Proof. Define

g(σ2
t ) = − log σ2

t

2
+ a log f(µt, σ

2
t , ρt),

such that ∂ℓt
∂σ2

t
=

∂g(σ2
t )

∂σ2
t

= − 1
2σ2

t
+ a

f ′
σ2
t

f(µt,σ2
t ,ρt)

, with f ′
σ2
t
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ν(1+s(εt)ρt)2σ4
t
. It follows that:
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The score with respect to the shape parameter reads as

∂ℓt
∂ρt

=
s(εt)

(1 + s(εt)ρt)
wtζ

2
t .

Proof. Define

g(ρt) = a log f(µt, σ
2
t , ρt),
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such that ∂ℓt
∂ρt

= ∂g(ρt)

∂σ2
t

= a
f ′
ρt

f(µt,σ2
t ,ρt)

, with f ′
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. It follows that:
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A.2 Scaled scores

Given we model γt = log σt and δt = atanh(ρt), for the chain rule we have:

∂ℓt
∂γt

=
∂ℓt
∂σ2

t

∂σ2
t

∂γt
,

∂ℓt
∂δt

=
∂ℓt
∂ρt

∂ρt
∂δt

, (15)

where ∂σ2
t

∂γt
= 2σ2

t and ∂ρt
∂δt

= (1 − ρ2t ). We can thus define the vector of interest as ft = (µt, γt, δt)
′

with the associated Jacobian matrix

Jt =
∂(µt, σ

2
t , ρt)

∂f ′
t

=


1 0 0

0 2σ2
t 0

0 0 1− ρ2t

 . (16)

The Fisher information matrix is computed as the expected value of outer product of the gradient

vector. Given the degrees of freedom ν > 3 this is computed as:

It = Et−1[∇t∇′
t] =


(1+ν)

(ν+3)(1−ρ2t )σ
2
t
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0 1
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0
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As a result, the vector of scaled scores reads as:

st = (J ′
tdiag(It)Jt)

−1J ′
t∇t =


sµt
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2
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 . (18)

with χ = (ν+3)
(ν+1)

and wt =
ν+1

ν(1+s(εt)ρt)2+ζ2t
.
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B Evidence for other inflation measures

In this appendix we report additional results about other policy relevant measures of inflation.

Specifically, we consider, the GDP deflator, headline PCE and core and headline CPI. All samples

go from 1960 Q1 to 2024 Q2.

Table 4 collect the test statistics for the detection of time variation in the asymmetry for all

four measures of inflation. Overall, the null of restricted asymmetry is strongly rejected.

Table 4: Time variation in higher order moments

Q Q∗ N Q Q∗ N

GDP Deflator Headline PCE

Homoskedastic

Shape 637.470∗∗∗ 644.910∗∗∗ 5.690∗∗∗ 303.820∗∗∗ 307.370∗∗∗ 6.460∗∗∗

Heteroskedastic

Scale2 597.120∗∗∗ 604.090∗∗∗ 4.050∗∗∗ 566.190∗∗∗ 572.800∗∗∗ 2.330∗∗∗
Shape 154.150∗∗∗ 155.950∗∗∗ 2.780∗∗∗ 148.610∗∗∗ 150.350∗∗∗ 1.890∗∗∗

Core CPI Headline CPI

Homoskedastic

Shape 840.710∗∗∗ 850.480∗∗∗ 3.290∗∗∗ 407.600∗∗∗ 412.340∗∗∗ 4.220∗∗∗

Heteroskedastic

Scale2 556.980∗∗∗ 563.460∗∗∗ 3.810∗∗∗ 730.210∗∗∗ 738.700∗∗∗ 3.430∗∗∗
Shape 185.210∗∗∗ 187.360∗∗∗ 3.260∗∗∗ 183.040∗∗∗ 185.160∗∗∗ 2.150∗∗∗

Note: Q is the portmanteau test, Q* is the Ljung-Box extension (with automatic lag selection) and N corresponds
to the Nyblom test. Q and Q* are distributed as a χ2

1, while N is distributed as a Cramer von-Mises distribution
with 1 degree of freedom. * p < 10%, ** p < 5%, *** p < 1%.

Based on previous results, we also report the estimates for the time-varying moments of the

four measures.
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C Additional results

Table 5: Out-of-sample comparison - Student t

h = 1 h = 2 h = 3 h = 4 h = 8

MSFE 0.839
(0.085)

0.854
(0.051)

0.908
(0.081)

0.942
(0.129)

1.008
(0.782)

CRPS 0.938
(0.074)

0.950
(0.077)

0.960
(0.081)

0.959
(0.074)

0.996
(0.331)

CRPS decomposition

Right 0.927
(0.109)

0.914
(0.075)

0.935
(0.099)

0.936
(0.074)

0.981
(0.116)

Left 0.952
(0.088)

0.982
(0.258)

0.986
(0.197)

0.983
(0.200)

1.009
(0.808)

Center 0.936
(0.058)

0.953
(0.117)

0.960
(0.041)

0.960
(0.060)

0.999
(0.476)

Note: The table report the relative performance of a t model against our Skt model. Results are reported in ratios,
with our model being at the numerator; values smaller than 1 imply superior predictive accuracy of the SKt model.
The out-of-sample period runs from 2000Q1 to 2024Q2. Values in bold are significant at the 10% level.

Table 6: Out-of-sample comparison - ϱ = 0, ∀t

h = 1 h = 2 h = 3 h = 4 h = 8

MSFE 0.832
(0.081)

0.884
(0.115)

0.906
(0.057)

0.966
(0.190)

1.055
(0.997)

CRPS 0.947
(0.116)

0.961
(0.153)

0.962
(0.075)

0.978
(0.166)

1.024
(0.983)

CRPS decomposition

Right 0.928
(0.081)

0.928
(0.053)

0.947
(0.048)

0.962
(0.123)

1.012
(0.854)

Left 0.967
(0.242)

0.995
(0.440)

0.988
(0.339)

0.998
(0.461)

1.039
(0.994)

Center 0.946
(0.123)

0.961
(0.150)

0.954
(0.053)

0.977
(0.155)

1.024
(0.970)

Note: The table report the relative performance of our Skt model when skewness is omitted (ϱt = 0, ∀t) against our
Skt model. Results are reported in ratios, with our model being at the denominator; values smaller than 1 imply
superior predictive accuracy of the SKt model. The out-of-sample period runs from 2000Q1 to 2024Q2. Values in
bold are significant at the 10% level.
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Table 7: Deep parameters estimates

Autocorrelations

ϕµ ϕγ ϕδ

0.990
(0.006)

0.853
(0.068)

0.803
(0.055)

Learning rates

aµ bµ aγ bγ aδ bδ
0.095
(0.005)

0.094
(0.005)

0.084
(0.013)

0.088
(0.011)

0.041
(0.011)

0.085
(0.013)

Degrees of freedom

η
0.130
(0.035)

Note: The table reports mean estimates of the deep parameters of the model. Parameters standard deviations are
reported in parentheses.

D Solving the New Keynesian model with mark-up shock

Let us start from the baseline three-equation New Keynesian model for output, inflation and

the interest rate,

xt = Et [xt+1]− ς−1 [it − Et [πt+1]− r∗t ] ,

πt = β Et [πt+1] + κxt,

it = πt + ϕπ (πt − π∗
t ) ,

and let r∗t = ς
[
Et

[
y∗t+1

]
− y∗t

]
and y∗t = ωαt denote the natural rate of interest and the output under

fully-flexible prices, respectively. αt ∼ iidF (0, σα, ϱα,t) is a TFP shock distributed according to a

general class of unimodal, (possibly) asymmetric densities, such that E [αt] = ψα,t ̸= 0 if ϱα,t ̸= 0.

It follows that y∗t ∼ iidF (0, ωσα, ϱα,t) and r∗t = ςω (Et [αt+1]− αt); therefore

r∗t ∼ iidF (µ⋆
t , σ

⋆
t ϱ

⋆
t )

where µ⋆
t = ςω Et [ψα,t+1], σ⋆

t = ςωσα and ϱ⋆t = −ρα,t. Note that E [r∗t ] = ςω (Et [ψα,t+1]− ψα,t),

and so E [r∗t ] ̸= 0 if Et [ψα,t+1] ̸= ψα,t.

45



We can now rewrite the system in matrix form as:

 ς (1 + ϕπ)

−κ 1


 yt

πt

 =

 ς 1

0 β


 Et [yt+1]

Et [πt+1]

+

 1 ϕπ

0 0


 r∗t

π∗
t

 ,
or

Φ0Yt = Φ1 Et [Yt+1] + Θεt (19)

in compact form. We solve the system by assuming a linear solution, Yt = c+Bεt, such that

Et [Yt+1] = c+B Et [εt+1] .

We now substitute the solution in Equation (19)

Yt = Φ−1
0 Φ1 [c+B Et [εt+1]] + Φ−1

0 Θεt (20)

which requires that B = Φ−1
0 Θ; rearranging, we get

c = (Φ0 − Φ1)
−1Φ1Φ

−1
0 ΘEt [εt+1] .
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To solve for c we need the following quantities

Φ−1
0 =

 ς (1 + ϕπ)

−κ 1


−1

=
1

ς + κ (1 + ϕπ)

 1 − (ϕπ + 1)

κ ς

 ,
B = Φ−1

0 Θ

=
1

ς + κ (1 + ϕπ)

 1 − (ϕπ + 1)

κ ς


 1 ϕπ

0 0


=

1

ς + κ (1 + ϕπ)

 1 ϕπ

κ κϕπ


=

1

ς + κ (1 + ϕπ)

 1

κ

[
1 ϕπ

]
,

(Φ0 − Φ1)
−1 =


 ς (1 + ϕπ)

−κ 1

−

 ς 1

0 β




−1

=

 1
κϕπ

(1− β) − 1
κ

1
ϕπ

0

 .
We can now compute

(Φ0 − Φ1)
−1Φ1 =

 1
κϕπ

(1− β) − 1
κ

1
ϕπ

0


 ς 1

0 β


=

1

ϕπ

 ς
κ
(1− β) −ϕπ

κ
β − 1

κ
(β − 1)

ς 1

 ,
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such that the solution for c reads

c = (Φ0 − Φ1)
−1Φ1Φ

−1
0 ΘEt [εt+1]

=
1

ϕπ

1

ς + κ (1 + ϕπ)

 ς
κ
(1− β) −ϕπ

κ
β − 1

κ
(β − 1)

ς 1


 1

κ

[
1 ϕπ

]
Et [εt+1]

=
1

ϕπ [ς + κ (1 + ϕπ)]

 (
ς
κ
+ 1

)
(1− β)− ϕπβ

ς + κ

[
1 ϕπ

]
Et [εt+1] .

We now isolate Et [πt+1] to obtain:

Et [εt+1] =

[
0 1

]
Et [Yt+1]

=

[
0 1

]
[c+B Et [εt+1]]

=

[
0 1

] [
(Φ0 − Φ1)

−1Φ1Φ
−1
0 Θ+ Φ−1

0 Θ
]
Et [εt+1]

=
1

ς + κ (1 + ϕπ)

[
0 1

]
[
ς+κ
ϕπκ

+ 1
]
(1− β)

ς+κ
ϕπ

+ κ

[
1 ϕπ

]
Et [εt+1] .

Optimal policy requires that Et [πt+1] = 0, which implies

Et

[
r∗t+1 − ϕππ

∗
t+1

]
= 0

and so we can obtain

Et

[
π∗
t+1

]
= − 1

ϕπ

Et

[
r∗t+1

]
= −ςω

ϕπ

(Et [ψα,t+1]− ψα,t) , (21)

which implies Et

[
π∗
t+1

]
̸= 0 if Et [ψα,t+1] ̸= ψα,t.

We can finally recover the implied distribution of inflation in closed form. Under the optimal
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policy Et

[
r∗t+1 − ϕππ

∗
t+1

]
= 0 such that c = 0. Hence,

Yt = Bεt

=
1

ς + κ (1 + ϕπ)

 1

κ

 (r∗t + ϕππ
∗
t ) ;

assuming π∗
t is constant, it is easy to show that

xt ∼ iidF

(
µ⋆ + ϕππ

∗
t

ς + κ (1 + ϕπ)
,

σ⋆

ς + κ (1 + ϕπ)
, ϱ⋆

)
,

πt ∼ iidF

(
κ (µ⋆ + ϕππ

∗
t )

ς + κ (1 + ϕπ)
,

κσ⋆

ς + κ (1 + ϕπ)
, ϱ⋆

)
.
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