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The pandemic and war have underscored the need for the risk management framework to take
full account of both upside and downside risks to inflation, as well as to the possibility that
serious tensions may arise between the objectives of price stability and employment or growth.

Gita Gopinath, Jackson Hole Symposium, August 26, 2022

1 Introduction

After nearly three decades of taking a backseat, inflation has once again become a significant

concern for market participants and policymakers worldwide. This concern stems not only from

the recent inflation surge observed in many countries but also from a growing perception that

geopolitical developments and changes to international supply chains have increased the likelihood

of inflation spikes. Gita Gopinath, Deputy Managing Director of the International Monetary Fund,

captured this sentiment in her remark at the Jackson Hole Symposium, emphasizing the need for

risk management frameworks to account for both upside and downside inflation risks.

In this paper, we explore how such a framework can be designed within a general equilibrium

model where shock distributions are skewed, with skewness evolving over time. Positive (negative)

skewness reflects a longer or fatter right (left) tail, indicating that positive (negative) outcomes are

more probable, or equivalently, that the balance of risks is tilted to the upside (downside). This

model serves as a valuable tool for evaluating the robustness of alternative policy strategies in

managing both upside and downside inflation risks and for deriving the optimal policy in response

to a time-varying balance of macroeconomic risks.

While symmetric changes in risks are well-known to have no first-order effects on equilibrium

outcomes, asymmetric shifts in risks do, as they influence agents’ expectations. Positive (negative)

skewness increases (decreases) expectations by pulling the mean toward the right (left) tail. Con-

sequently, changes in the skewness of the shocks distribution affect agents’ decisions, even at first

order, through their impact on expectations. In fact, expectations are the only moment of agents’

beliefs that matters for optimal decisions in a linearized model. Therefore, the first-order effects

of asymmetric risks can be studied through the log-linear approximation of the model around its

steady-state equilibrium augmented with zero-mean Gaussian anticipated shocks that exclusively

serve to tilt agents’ expectations of future shocks away from the mode, consistent with the skew-
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ness of their distribution. By design, these shocks never materialize, resembling noise, sentiments,

or shifts in pure beliefs. Hence, we call this framework the beliefs representation of asymmetric

risks.

While focusing on the first-order effects of asymmetric macroeconomic risks limits the types

of asymmetry we can consider and the number of channels through which risks can influence

allocations and prices, we highlight two main advantages. First, the linear-quadratic beliefs repre-

sentation allows the characterization of the solution to the optimal policy problem analytically and

within a framework comparable to that employed by the literature on optimal monetary policy

under symmetric shocks (Clarida et al., 1999; Woodford, 2003; Galí, 2008). Our analysis shows

that the optimal policy requires the central bank to adopt a strategy that shifts the modal scenario

of expected inflation in the opposite direction of the balance of inflation risks. For instance, if the

balance of inflation risks is tilted to the downside, the central bank should communicate a more

accommodative path.

Second, the laws of motion in the beliefs representation are linear and all shocks – i.e. the

structural ones and the dummy anticipated ones – are Gaussian. Therefore, this representation of

the model can be solved with extremely fast and accurate off-the-shelf techniques.1 This tractability

enables the analysis of real-time changes in the balance of inflation risks within a quantitative

dynamic general equilibrium framework.

To perform this task, we proceed in two steps. First, we introduce a time-series model to esti-

mate the predictive distributions of U.S. core Personal Consumption Expenditure (PCE) inflation

in real time, accounting for time variation in the mean, variance, and skewness. Our analysis

identifies statistically significant and frequent shifts in the balance of inflation risks throughout

the postwar period, often following persistent, regime-like patterns. We demonstrate that incor-

porating time-varying skewness in inflation forecasts significantly improves out-of-sample accuracy

compared to standard benchmark models (see, e.g., Stock and Watson, 2007), achieving levels of

accuracy comparable to those of the SPF. These findings support the view that inflation risks vary

significantly over time and is often asymmetric.

Second, we set up the beliefs representation of a quantitative Dynamic Stochastic General
1An example of these techniques is Dynare.
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Equilibrium (DSGE) model à la Smets and Wouters (2007) to match the real-time changes to the

balance of inflation risks implied by the estimated predictive distributions. Within this quantitative

structural framework, we study the implications of a central bank addressing the unbalanced

inflation risks by communicating a temporary overshoot or undershoot of inflation relative to its

target. By issuing this forward guidance, the central bank adjusts the central inflation scenario

to counterbalance asymmetric inflationary risks, ensuring that both inflation expectations and

average inflation remain anchored at the target.2 We call this approach Risk-Adjusted Inflation

Targeting (RAIT). Our findings suggest that during the recent inflation surge, when real-time

estimates indicated inflation risks were significantly skewed to the upside, the RAIT would have

recommended raising rates earlier and with greater intensity. Starting in early 2023, the RAIT

would have called for a more rapid unwinding of the previous monetary tightening.

In contrast to the Flexible Average Inflation Targeting (FAIT) – adopted by the Federal Reserve

in 2020 to address deflationary risks arising from the increased likelihood of hitting the zero lower

bound (ZLB) constraint (Clarida, 2022) – the RAIT offers greater flexibility in adapting to changes

in the stochastic properties of inflation. While the FAIT relies on past inflation deviations from

the 2% inflation objective to guide the extent of overshooting, the RAIT is anchored in the central

bank’s assessment of the evolving balance of inflation risks. This feature makes the RAIT more

responsive than the FAIT to sudden shifts in inflation skewness, such as those observed at the

onset of the COVID-19 pandemic and again in early 2023.

While the FAIT was introduced to mitigate the deflationary bias observed in the 2010s, the

RAIT would have recommended maintaining the symmetric inflation stabilization strategy without

adjustment. This is because, despite inflation running below target for much of the past decade,

inflation volatility reached historically low levels, making the balance of risks’ effect on inflation

expectations negligible. Consequently, during that period, the RAIT would not have required the

central bank to modify its strategy to address the negative skewness in inflation outcomes.

One of the key advantages of our linear-quadratic approach to studying the macroeconomic

implications of an evolving balance of risks is its tractability. However, this framework is not well-
2This is just one way to implement this strategy. An equivalent strategy would be to shift the intercept of the

central bank’s reaction function and so shifting the nominal interest rate persistently above or below its long-run
neutral level.
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suited for analyzing certain skewed distributions where the mean scenario has a low probability of

occurring, such as some extreme cases of multimodality. This limitation is due to the fact that, in

a linear model, the only moment of agents’ beliefs that matters is the first.

It is important to emphasize that the proposed approach to modeling asymmetric macroeco-

nomic risks in a dynamic general equilibrium model and solving for the optimal risk-management

strategy is generic. It can be integrated with various methods for estimating skewness, not limited

to the one adopted in this paper.

Literature Review Our work contributes to the relatively sparse literature on risk manage-

ment approaches in monetary policy. Dolado et al. (2004) and Surico (2007) demonstrate that

asymmetric loss functions can lead to optimal policy rules incorporating nonlinear terms for infla-

tion and the output gap, reflecting policymakers’ asymmetric preferences. Kilian and Manganelli

(2008) highlight the importance of balancing upside and downside risks under an asymmetric loss

function, while Kilian and Manganelli (2007) measure inflation risks under time-varying symmetric

volatility. In these frameworks, central banks may target an average inflation rate different from

their stated target when the costs of undershooting and overshooting are asymmetric. This bias

disappears with a symmetric loss function. In this paper, we always assume that the loss function

is symmetric. Our key contribution is to show that when inflation risk is asymmetric, the optimal

response must account for the balance of risks, even under a symmetric target. Asymmetric in-

flation risk creates a divergence between the central forecast and the expected inflation path, and

failure to address this divergence results in systematic deviations from the target on average.

Evans et al. (2020) argue that the ZLB requires a looser monetary policy under uncertainty,

leading to an optimal delay in policy liftoff. Moreover, they provide both narrative and statistical

evidence that the Federal Reserve has frequently employed risk management when setting the

policy rate. Bianchi et al. (2021) show that the deflationary bias caused by the risk of recurrently

hitting the ZLB constraint can be mitigated if the central bank adopts an asymmetric monetary

strategy. Such a strategy entails responding more strongly to inflation deviations below target

than to those above target.

Unlike these papers, our work examines the importance of the central bank responding to
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changes in the balance of macroeconomic risks beyond those exclusively associated with the ZLB

constraint. Furthermore, none of these studies estimate time-varying asymmetric risks in the

data using a new forecasting model or demonstrate how such estimates can be integrated with a

quantitative structural model to explicitly analyze the implications of monetary policy strategies

that target inflation risks.

This paper examines the empirical implications of inflation-targeting measures – specifically

the RAIT – and is therefore connected to the long-standing and extensive literature on optimal

flexible inflation targeting (Svensson, 1997; Giannoni and Woodford, 2004).

Our paper is also related to the literature on inflation forecasting. This literature has largely

focused on the importance of accounting for slow-moving trends in the data and time-varying

uncertainty (see, e.g., Stock and Watson, 2007; Faust and Wright, 2013; Ascari and Sbordone,

2014). Far less attention has been devoted to the risks of inflation or deflation. Some recent

exceptions include Andrade et al. (2014); Hilscher et al. (2022). Differently from our approach,

that only requires a single time series to extract predictive inflation distributions, Andrade et al.

(2014) rely on survey data to extract measures of time-varying perceived inflation asymmetry

and show that this has predictive power over future inflation. Hilscher et al. (2022) introduces a

methodology to extract market-based tail probabilities from options data. Their approach relies

on the availability and involved manipulations of inflation derivatives data. However, we find an

high correlation between the predicted disaster probabilities with the same measures extracted in

real-time from our model.3

Only recently the attention has moved to the modeling of the whole density of inflation outcomes

(Manzan and Zerom, 2013, 2015; Korobilis et al., 2021; López-Salido and Loria, 2024). In contrast

to previous work, that mostly rely on quantile regression approaches, we follow Delle Monache

et al. (2024a) and devise a parametric model for the whole density of US core PCE. The model

allows for asymmetric innovations, drawn from a Skew-t distribution (see Arellano-Valle et al.,

2005), and relies on the score-driven framework of Harvey (2013) and Creal et al. (2013) to set up

laws of motion for the parameters, as in Delle Monache and Petrella (2017).4 Following Stock and
3Disaster probabilities are defined as the probability of inflation being above 4% and 5% over the next ten years.
4Score-driven dynamics provide, under some general conditions, optimal updates in the informational theoretic

5



Watson (2007), we allow time-varying moments to feature trend components, mainly driven by

structural policies, in line with Cogley and Sbordone (2008) and Ascari and Sbordone (2014), and

cyclical variations, aimed at capturing transitory, short-lived factors that can temporarily affect

price dynamics (“cost-push” and demand forces, as in Gordon, 1970).

Two recent papers are directly related to ours. First, Le Bihan et al. (2024) introduces a new

real-time measure of underlying inflation that incorporates time-varying changes in asymmetric

risks to the inflation outlook. Their indicator is based on a multivariate regime-switching frame-

work, jointly estimated using disaggregated sub-components of the Euro Area’s harmonized index

of consumer prices (HICP). Second, López-Salido and Loria (2024) document substantial variabil-

ity in the tails of inflation, and relates their dynamics to deteriorating financial conditions and

macroeconomic factors. Both papers employ sample periods that are shorter than ours and do

not cover the earlier episode of persistently elevated inflation in the 1970s. Moreover, whereas

López-Salido and Loria (2024) related their findings about tail dynamics to the model of Gertler

et al. (2020), none of the two contributions explore the implications of asymmetric inflation risks

for optimal monetary policy through the lens of DSGE models.

Structure The remainder of the paper is organized as follows. In Section 2, we characterize

the optimal monetary policy within a New-Keynesian model featuring asymmetric macroeconomic

risks. To solve this problem, we show how to obtain the beliefs representation of a model with

asymmetric risks. We then estimate the skewness of US inflation in real time using an econometric

model Section 3. In Section 4 we calibrate the beliefs representation of a quantitative DSGE

model to match the estimates of the balance of inflation risks coming for the econometric model

and conduct a number of counterfactual exercises. In Section 5, we conclude.

2 Optimal monetary policy with asymmetric inflation risks

In this section, we analyze the implications of time-varying asymmetric macroeconomic risk

for optimal monetary policy in a standard New Keynesian model with sticky prices (Galí, 2008,

sense (Blasques et al., 2014).
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chapter 3). The model is shown in Appendix A. We begin by showing the benchmark (well-known)

case of optimal monetary policy in a linear-quadratic model with symmetric macroeconomic risk.

Then, we consider the case when risks are asymmetric within the same linear-quadratic framework.

We derive the beliefs representation of the asymmetric risks, and then we characterize the optimal

policy analytically. Finally, we consider the case where risks are asymmetric but the central bank

looks through this feature when deciding its optimal policy. This last case offers valuable insights

into the optimal monetary strategy under asymmetric risks, which will be further explored through

numerical simulations at the end of the section.

2.1 The case of symmetric risks

Let us assume that the central bank can fully commit, with complete credibility, to a policy plan

by selecting a state-contingent sequence of inflation deviations from its target and output gaps,

{π̂t, x̂t}∞t=0, so as to maximize the quadratic approximation of the household’s utility function:

1

2
E0

∞∑
t=0

βt
(
π̂2
t + αxx̂

2
t

)
subject to the sequence of constraints given by the Phillips curve

π̂t = βEtπt+1 + κx̂t + ut,

where ut = ρuut−1 + εut and the shock is distributed symmetrically; that is, εut ∼ N (0, σ2
u,t). The

objective function is the quadratic approximation of the household’s standard utility function –

shown in Appendix A – and the weight on the output gap is αx = κ/ε, where ε denotes the

elasticity of substitution between differentiated goods produced by monopolistically competitive

firms and κ denotes the slope of the Phillips curve. Agents are rational and, therefore, fully aware

of the distributions from which future shocks will be drawn – that is, they know the sequence of

future standard deviations {σu,t+h}∞h=0. All variables are expressed in log-deviations from their

steady-state value.
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It is easy to show that the following optimality condition must hold:

x̂t = − κ

αx
p̄t, (1)

where p̄t = pt − p−1 is the cumulative inflation rate over period 0 through period t, with pt

denoting the log of the price level at time t, and p−1 is the implicit target given by the price level

prevailing one period before the optimal plan is chosen by the central bank. As it is well known,

this optimality condition can be interpreted as a targeting rule that the central bank is required

to follow in every period in order to implement the optimal policy. Under the optimal policy, the

central bank sets the sign and the size of the output gap in proportion to the deviations of the

price level from its implicit target (Galí, 2008, chapter 5).

Following Galí (2008), we show that the price level under the optimal policy is:

p̄t = ηp̄t−1 + λut, (2)

and the optimal monetary rule (under the assumption that ρu = 0) follows:

ît = − (1− η)

[
1− σ

κ

αx

]
p̄t, (3)

where σ denotes the household’s coefficient of risk adversion and the coefficients η and λ are

function of other structural parameters of the New Keynesian model as shown in Appendix A.

The appendix also includes detailed derivations of the equilibrium equations.

2.2 The case of asymmetric risks: the beliefs representation

Let us now introduce asymmetric macroeconomic risks. Specifically, we assume that the

stochastic process driving markups, ut = ρuut−1 + ε̃ut , involves shocks distributed according to

a probability density function ε̃ut ∼ Fu,t, which may be skewed, and the moments are allowed to

vary over time. As in the symmetric case, agents are rational, thus fully aware of the distributions

from which future shocks will be drawn; that is, they know the sequence of future distributions
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{Fu,t+h}∞h=0. The distributions are assumed to be unimodal with zero mode at all time.5

In this linear-quadratic framework, expectations are the only moment of agents’ beliefs affecting

agents’ optimal decisions. Moreover, it should be noted that changes in the skewness of the

shocks distribution, Fu,t, affect agents’ optimal decisions through their impact on expectations.

Specifically, positive (negative) skewness increases (decreases) expectations by pulling the mean

toward the right (left) tail. Therefore, to characterize agents’ optimal decisions and to solve for the

optimal policy, one needs to be able to pin down agents’ expectations, which, in this asymmetric

case, are also affected by the changing shape of the distribution of price markup shocks.

To capture the effects of the changing skewness on agents’ expectations, we introduce a sequence

of dummy anticipated shocks, which are drawn from a Normal zero-mean distribution. A feature of

these anticipated shocks is that they never materialize, akin to noise, sentiments, or shifts in pure

beliefs. This approach enables us to derive the beliefs representation of the model with asymmetric

macroeconomic risks, in which all shocks are normally distributed. This representation allows the

complete characterization of agents’ beliefs by taking into account the effects of asymmetrically

distributed shocks. Once beliefs are correctly specified, we can characterize the solution to the

optimal monetary policy problem presented in Section 2.1.

To illustrate how to obtain the beliefs representation of Gali’s basic New Keynesian model, we

assume that agents know the distribution only one period ahead and expect it to become symmetric

in two periods.6 Under this assumption, we write the autoregressive process for the price markup

shocks in the beliefs representation of the model as follows:

ut = ρuut−1 + εut +
(
φ0
t + φ1

t−1

)
, (4)

5Multimodal distributions, where the expected realization of shocks usually has an extremely low probability,
are excluded from our analysis. Addressing such distributions would require a nonlinear model to examine their
implications for monetary policy, which lies beyond the scope of our linear framework. In our framework, risks
influence allocations and prices by tilting the agents’ expectations away from the modal scenario. While this
limitation narrows somewhat the scope of the macroeconomic risks we can study with our framework, it ensures
analytical tractability. Nevertheless, our framework accommodates multimodal cases where the expected value of
future macroeconomic outcomes has a significant probability of occurring.

6This assumption can easily be relaxed, as we will do later in the quantitative analysis. The general fully rational
case, where agents know the true distributions from which future shocks will be drawn, requires expressing the price
markup process in the beliefs representation as follows: ut = ρuut−1 + εut +

∑J
j=0 φ

j
t−j . We assume that after J

periods, the distribution becomes symmetric, where J can be arbitrarily large. We will use this specification later
in the quantitative part of the paper.
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where φjt , for j ∈ {0, 1}, are Gaussian shocks known in period t that are expected to change price

markup in period t+ j. The actual price markup shock is unanticipated and normally distributed;

that is, εut ∼ N (0, σ2
u,t). As in the symmetric case, agents know the future evolution of the standard

deviation of this distribution.

The effects of the asymmetric distribution of ε̃ut on agents’ expectations are captured by the

anticipated shock φ1
t . Note that the expected value of the next period’s markup shock is Etεut+1 =

φ1
t ̸= 0, shifting expectations about the shock in period t+1 away from the modal forecast, which

is equal to zero. Consequently, the expectation of next period’s markup is Etut+1 = ρuut + φ1
t ,

which is different from the modal scenario, ρuut.

We have to make sure that the effects of the dummy anticipated shocks, φ1
t , remain confined

to the realm of beliefs and never materialize into an actual shock to the markup, as their function

is solely to capture the effects of asymmetric risks on agents’ expectations. To achieve this, we

neutralize the effects of the dummy anticipated shocks when they are supposed to affect the markup

ut. Formally, we require the dummy surprise markup shocks to satisfy the condition φ0
t = −φ1

t−1

in every period t.

In the beliefs representation, the optimal policy and the equilibrium dynamics of the price level

and the output gap under this policy can be characterized analytically and read as follows:

p̄t = ηp̄t−1 + λut + ζφ1
t ,

x̂t = ηx̂t−1 −
κ

αx

[
λut + ζφ1

t

]
.

Detailed derivations are provided in Appendix A. Note that, in this linearized model, macroeco-

nomic risks introduce a wedge in agents’ expectations relative to the modal scenario (i.e., agents’

expectations in the symmetric case). Consequently, the equilibrium dynamics of prices and the

output gap are shifted upward or downward, depending on the direction of the risks (φ1
t ).

The optimal interest rate rule in the beliefs representation (assuming ρu = 0) is:

ît = − (1− η)

[
1− σ

κ

αx

]
p̄t +

[
1− σ

κ

αx

]
λφ1

t ,
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where the first term on the right-hand side represents the optimal rule under symmetry, and the

second captures the policy rate adjustment required to offset the effects of the balance of risks on

agents’ expectations, φ1
t .7 This rule suggests that the optimal policy requires the central bank to

respond to the effects of the changing balance of macroeconomic risks on agents’ expectations.

2.3 The case of asymmetric risks with an unwitting central bank

Assume now that the central bank chooses its optimal policy without internalizing that macroe-

conomic risks are asymmetric, whereas agents are aware of it. This scenario makes an useful

counterfactual scenario to draw intuition regarding the key features of the optimal policy under

asymmetric shocks.

When the central bank ignores that macroeconomic risks can be unbalanced, it will aim to

achieve the price level that would arise if the distribution of shocks were symmetric (conditional

on the previous period’s price level). Specifically, the central bank chooses the output gap x̂t such

that

x̂t = − κ

αx
p̄st , (5)

where p̄st = pst − p−1 and pst denotes the equilibrium price level the central wants to achieve based

on its beliefs that shocks are symmetrically distributed. Specifically, this “wrong” price level is

defined as:

p̄st = ηp̄t−1 + λut. (6)

Note that this price level is not exactly the same as that in the fully symmetric case – Equation (2)

– as the central bank conditions its policy action today on the equilibrium price level from the

previous period, p̄t−1. This assumption implies that “bygones are bygones,” as the central bank

does not attempt to correct past mistakes – i.e. p̄t−1 − p̄st−1 in its current policy actions.

7Detailed derivations and parameter values are in Appendix A. The derivation of the interest-rate rule satisfying
the determinacy of one stable rational expectations equilibrium is also shown in the appendix.
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It is important to point out that this case is not intended to be realistic – at some point, the

central bank realizes that the targeted price level cannot be achieved. This case is introduced to

highlight key insights regarding the implications of optimal policy under asymmetric macroeco-

nomic risks.

The central bank – unaware of macroeconomic risks – targets the deviations of the wrong price

level (p̄st ̸= p̄t) from the implicit target, p−1. Comparing the above optimality condition with

Equation (1), which holds also in the case of asymmetric risk studied in the previous section,

reveals that the central bank sets the sign and the size of the output gap in proportion to the

deviations of the price level (p̄st) that is not achievable because of the presence of asymmetric

macroeconomic risks. As a result, the output gap will be suboptimal and under an equilibrium

price level that is different from that targeted by the central bank. The equilibrium price level in

the case the central bank overlooks the presence of asymmetric macroeconomic risk is shown in

the Appendix A.

2.4 A illustrative example

We now present a simulation to illustrate how an optimizing central bank should respond to

changes in the balance of macroeconomic risks. The simulation assumes that the distribution of

price markup shocks in period 2 is negatively skewed, represented by a dummy anticipated shock

φ1
t = −0.8 at t = 1. Agents are assumed to be fully aware of this asymmetry starting in period

1, when the simulation begins. In period 2, a negative price markup shock is drawn from the

negatively skewed distribution; that is, εut = −0.8 with t = 2. In all other periods, shocks are

zero, and their distribution is symmetric. The economy is assumed to be at the non-risky steady

state in period 0. Furthermore, the markup shocks are modeled as independently and identically

distributed (IID), such that ρu = 0.

Results of this simulation are shown in Figure 1. We set the values of the model parameters

following Galí (2008), Chapter 3, which we report in Appendix A. The symmetric risks case is

represented by the black solid line – where we set the skewness to zero or φ1
t = 0 in any period t.

In the asymmetric risks case, where the central bank is aware of the balance of risks (blue dashed
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Figure 1: Optimal monetary policy under symmetric and asymmetric macroeconomic risks.
Note: The panels report the macroeconomic effects of a markup shocks drawn from a symmetric distribution (the
black solid line) and from an asymmetric distribution (the blue dotted line with circle markers) under optimal
monetary policy. The shock hits the economy in period 2, which is the only period when its distribution is assumed
to be negatively skewed. The red dashed-dotted line denotes the counterfactual case where risks are asymmetric
but the central bank does not take it into account when solving the optimal monetary policy problem. In the lower
right panel, the price markup shock, ut is shown as well as the skewness (φ1

t ) – green line with square markers.
In the lower left panel, the line with red stars denotes the price targeted by the central bank that overlooks the
unbalance of risks, p̄st .

line with circle markers), the distribution of markup shocks exhibits negative skewness.

The period-by-period effects of skewness on agents’ expectations about the next period’s

markup shocks are illustrated by the green solid line with square markers in the bottom-right

panel. This line shows the dynamics of the anticipated shock, φ1
t , in the beliefs representation.

Since the distribution of shocks is negatively skewed only in period 2, the effects on expectations

arise exclusively in period 1, as indicated by the spike in the green line during the first period.

The red dashed-dotted line represents the case in which risks are asymmetric, but the central bank

does not take this into account (the case of the unwitting central bank.)

To understand the implications of optimal policy in the case of asymmetric risks, one should

compare the blue dashed line with circle markers to the red dashed-dotted line. The difference be-
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tween these two lines captures the effects of the optimal response of monetary policy to asymmetric

risks on the macroeconomic variables.

In the first period, the unwitting central bank chooses the same output as in the symmetric case

(the black solid line) because it aims to achieve the price level that would arise under symmetry.

However, agents’ expectations are distorted by the negative skewness in the distribution of markup

shocks for the next period. As a result, the desired price level turns out to be unattainable, with

the equilibrium price level being significantly lower. This is reflected in the red dashed-dotted line

falling below the black solid line at time 1 in the bottom-left panel.8

When the central bank accounts for negative inflation risks (the blue dashed line with circle

markers), it optimally seeks to overheat the economy to counteract these deflationary risks. Con-

sequently, the optimal response to negatively skewed markup shocks is to boost the output gap,

x̂t, and the price level, p̂t. Compare the blue dashed line with circle markers (optimal policy) to

the red dashed-dotted line (suboptimal policy failing to account for deflationary risks) in period

1 in the left panels. The difference between this two line in period 1 is entirely explained by the

central bank’s optimal response to the negative balance of inflation risks.

In period 2, a negative markup shock materializes, as illustrated by the markup shock shown

in the lower-right panel. At this point, agents understand that from now on, shocks will be drawn

from a symmetric distribution. Consequently, in this period and in the subsequent ones, the

central bank follows the same policy under the symmetric and the asymmetric risks cases. Despite

adopting the same policy strategy and operating in the same macroeconomic environment, the

shift in the balance of risks in period 1 leaves persistent effects on macroeconomic outcomes. This

is due to the path dependence introduced by optimal commitment.9

In summary, in the presence of asymmetric risks (period 1), optimal policy requires the central

bank to counteract the direction of the inflation risk. Specifically, an optimizing central bank must
8The desired output gap under symmetric shocks is zero, as no shocks hit the economy in period 1.
9However, the unwitting central bank continues to target the wrong price level in period 2, resulting in a

suboptimal output gap. The targeted price level is incorrect because the central bank failed to meet its price level
target in the previous period (see Equation (6)). If the unwitting central bank were to target the correct price
level, it would align with the price level shown in the symmetric risk case (the solid black line). It should be noted,
however, that the unwitting central bank can achieve the (wrong) targeted price level in period 2. As shown in the
bottom-left chart, the red star lies exactly on the red dashed-dotted line in period 2. This occurs because future
shocks are symmetrically distributed, thereby eliminating the bias in agents’ expectations.
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shift the modal inflation scenario in the opposite direction of the risk. In Figure 1, this shift in the

central scenario is depicted by the difference between the blue dashed line with circle markers and

the red dashed-dotted line in period 1 in the bottom-left panel. The central bank accomplishes

this by accepting a larger output gap in period 1. Conversely, if the balance of risks is tilted to the

upside, it is optimal for the central bank to cool down the economy, thereby pushing the modal

inflation scenario downward and accepting a negative output gap.

Not surprisingly, in the symmetric case, optimal monetary policy achieves a higher level of

welfare in every period, underscoring the fact that macroeconomic risks can exacerbate the trade-

offs faced by the central bank.

3 An econometric framework for inflation risk

In this section, we present a time-series model to estimate the full predictive density of inflation

in real-time, accounting for time variation in the first three moments of the distribution. The

model we propose inherits many features of common unobserved components specifications (along

the lines of Stock and Watson, 2007), and it comes with the additional flexibility of allowing for

skewness in the predictive distribution of inflation.

Based on this, we first formally test for time variation in inflation’s third moment, finding strong

evidence to reject the null of no variation. Second, we provide new insights into the stochastic

properties of inflation, with a focus on the dynamics of skewness. Finally, we demonstrate that ex-

plicitly modeling time-varying skewness in the inflation process delivers competitive out-of-sample

forecasting performance. These findings reinforce the view that inflation outcomes are asymmet-

rically distributed and underscore the importance of incorporating the third moment to better

understand inflation dynamics.

3.1 Model specification

Let us denote the annualized, quarter-on-quarter (core) PCE inflation rate with πt = 400 log(pt/pt−1)

and assume that at each point in time the distribution of πt can be characterized by a Skew-t (Skt)
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distribution with time-varying location (µt), scale (σt), and shape (ϱt) parameters:

πt ∼ Sktν(µt, σ
2
t , ϱt), (7)

where ν denotes the, time invariant, degrees of freedom. The distribution of inflation realizations

is positively (negatively) skewed for ϱt > 0 (ϱt < 0) and the underlying right- and left-risk around

the central scenario (mode), µt, can be retrieved as σt(1 − ϱt) and σt(1 + ϱt). This specification

allows as special cases: (i) the symmetric Student-t distribution when ϱt = 0, (ii) the epsilon-

Skew-Gaussian (Mudholkar and Hutson, 2000) for ν → ∞, and (iii) the Gaussian density when

both conditions hold jointly. Thus, we allow for, but do not impose, asymmetric innovation terms.

Following a long tradition in modeling the stochastic properties of inflation (see e.g., Cogley,

2002; Stock and Watson, 2007; Faust and Wright, 2013), we treat the time-varying parameters as

unobserved components that can be learned in real-time from the variation in the data. Unlike

Stock and Watson (2007), we opt for an observation-driven updating process.10 Specifically, let

δt = log(σt) and γt = arctanh(ϱt), we postulate that each element fi,t of ft = (µt, δt, γt)
′ features a

permanent and transitory component: fi,t = f̄i,t + f̃i,t, which evolve as:

f̄i,t = f̄i,t−1 + aisi,t−1, (8)

f̃i,t = ϕif̃i,t−1 + bisi,t−1. (9)

Updates of the time-varying parameters are proportional to si,t−1, which is the scaled score of the

conditional distribution (as in Creal et al., 2013; Harvey, 2013).11

Intuitively, the score vector translates the new information contained in the latest data release,

summarized by the prediction error, εt = πt − µt, into an update for the time-varying parameters

characterizing the predictive distribution of inflation; learning rates, ai and bi, regulate the strength
10In an observation-driven model, current parameters are deterministic functions of lagged dependent variables as

well as contemporaneous and lagged exogenous variables. In parameter-driven models, parameters vary over time
as dynamic processes with idiosyncratic innovations. See Cox (1981).

11The scaled score vector, st = (sµ,t, sσ,t, sϱ,t)
′, is defined as st = St∇t, where ∇t is the gradient of the likelihood

function with respect to the dynamic parameters; the scaling matrix St is proportional to the inverse of the diagonal
of the Information matrix, It = E [∇∇′]. Updates driven by the scaled score are (generally) guaranteed to reduce the
distance between the conditional and the true (unobserved) predictive distribution, easily allowing for non-Gaussian
features. See Blasques et al. (2015, 2022)
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Figure 2: Parameter updating
Note: Note: The panels report the scaled scores for different values of the standardized prediction error ζt = εt

σt
.

We consider the Gaussian case (black), the symmetric Skt5(µt, σt, 0) (orange), and negatively (green) and positively
(blue) Skt5(µt, σt, ϱt).

of the updates.12 We illustrate the updating mechanism in Figure 2.

Consider a symmetric Gaussian environment (black lines), where ν → ∞ and ϱt = 0 in every

period. The location and scale parameters –which now represent the mean and standard deviation

of the distribution– update in line with standard Kalman filter learning (see, e.g., Cogley, 2002).

Updates of the mean are proportional to the prediction error, with strength inversely proportional

to the variability of the data, and the volatility is updated proportional to the difference between

the variability of the prediction error and the expected variability of the inflation process. Allowing

for fat tails makes the updating mechanism robust to large, unanticipated prediction errors (orange

lines; see. e.g., Delle Monache and Petrella, 2017; Antolín-Díaz et al., 2024) When asymmetry is

introduced, the updating mechanism weights prediction errors differently, depending on their sign.

For example, when the conditional distribution is left skewed (green lines), parameters react more

to unexpected positive news, rather than to negative prediction errors, which are expected to

be more likely to occur. Consistently with this mechanism, large deviations of inflation from

the expected central scenario imply updates of the asymmetry parameter in the direction of the

prediction error.
12Appendix B we provide detailed derivations for the score and updates of the time-varying parameters of the

model (see also Delle Monache et al., 2024a).
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Expected value under asymmetry A defining feature of any skew-distribution, p(π|µt, σt, ϱt, ν),

is the fact that asymmetry directly affects the first moment of the distribution. Specifically, in the

case of the Skew-t distribution in Equation (7), one can show that

Etπt+h =

∫
R
πp(π|µt+h, σt+h, ϱt+h, ν)dπ, ∀h > 0

= µt+h + g(ν)σt+hϱt+h︸ ︷︷ ︸
ψt+h

, g(ν) =
4νC(ν)
ν − 1

, (10)

shows that the expected value can be represented as the sum of the mode and a component, ψt+h,

that is a function of the asymmetry parameter. That is, asymmetry creates a wedge between

the central scenario, e.g., the mode, and the expected value. This wedge has the same sign of

the prevalent asymmetry and is quantitatively more relevant as the distribution becomes more

dispersed, as ∂Et−1πt
∂ϱt

> 0, ∀t. In Section 4 we will exploit Equation (10) to introduce asymmetry

in the shocks of a quantitative DSGE to understand the optimal monetary policy response when

inflation risks is skewed. De Polis (2023) provides detailed derivations and closed forms for the

variance and skewness of the Skew-t model.13

3.2 Formally testing for time-varying inflation skewness

We now formally test for the evidence of time variation in the asymmetry of the predictive dis-

tributions of core PCE inflation. Starting from Equation (7), we estimate restricted specifications

of the model in Equations (8) and (9), where we assume constant asymmetry (ϕϱ = 1, bϱ = 0) and

constant asymmetry and scale (ϕσ = ϕϱ = 1, bσ = bϱ = 0).14

Table 1 reports the results of three alternative parametric Lagrange Multiplier tests: a Q

test, an adjusted Q* test, and the Nyblom test, applied to the score function sϱ,t as shown by

Delle Monache et al. (2024a). All test strongly reject the null hypothesis of symmetry at the 1%

confidence level; the right panel of the Table show an equally strong rejection after accounting for
13Note that asymmetry raises (decreases) the variance when positive (negative). Therefore, procyclical variations

in inflation skewness are reflected into a time-varying correlation between the mean and volatility of the process.
14For this exercise we estimate the models by maximum likelihood (see Blasques et al., 2022, for additional

details). Sample scale and shape are estimate as the initial values for the two parameters.
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Table 1: Time variation in higher order moments

Q Q∗ N Q Q∗ N

Homoskedastic Heteroskedastic

Scale2 369.36∗∗∗ 373.67∗∗∗ 1.50∗∗∗
Asymmetry 367.31∗∗∗ 371.60∗∗∗ 4.18∗∗∗ 35.65∗∗∗ 36.07∗∗∗ 0.79∗∗∗

Note: Q is the portmanteau test, Q* is the Ljung-Box extension (with automatic lag selection) and N corresponds
to the Nyblom test. Q and Q* are distributed as a χ2

1, while N is distributed as a Cramer von-Mises distribution
with 1 degree of freedom. * p < 10%, ** p < 5%, *** p < 1%.

stochastic volatility.15 These tests underscore the importance of accounting for the evolution of

inflation asymmetry when modeling the inflation process.

An extensive Monte Carlo exercise, reported in Appendix D, demonstrates that the procedure

detects skewness only when it is present and remains robust to (changing) correlations between

location and scale. Furthermore, additional tests based on rolling estimates of inflation asymmetry

provide further evidence supporting these results (see Appendix E).

Although simple rolling measures of sample skewness can be easily computed from raw data,

rolling window estimators face a trade-off between estimation accuracy and sensitivity to time

variation. Specifically, larger look-back windows improve the precision of third-moment estimates

by reducing the influence of isolated outliers but diminish the ability to detect and respond to

changes in real time. To address this limitation, we employ a flexible parametric model that

captures these features of the data without requiring such trade-offs. In the next section, we

demonstrate that our approach produces measures of time-varying skewness that are qualitatively

consistent with rolling estimates but respond more promptly to changes in inflation skewness.

3.3 In-sample inference

We now estimate the model introduced above and highlight some novel in-sample results about

the statistical properties of inflation. The parameters of the model and the associated conditional

distribution of inflation are estimated using Bayesian methods as in Delle Monache et al. (2024a);

refer to Appendix B for additional details.
15In Appendix C we show that the test results hold for different definitions of inflation.
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Figure 3: Time-varying moments of inflation
Note: The panels report mean, volatility and skewness of US core PCE. Blue lines represent total moments, red
lines correspond to long-run components only. Bands report 68 and 96% credible intervals. Gray shaded areas
represent NBER recessions.

The estimated model offers novel insights into the time-varying stochastic properties of the

inflation process. Figure 3 displays the estimated time-varying moments. We report in black the

total moment (e.g., computed using the total parameters, ft = f̄t + f̃t), whereas the persistent

components (e.g., setting ft = f̄t) are in green. The model reveals significant time variation across

all moments. The time-varying mean, reported in Figure 3a, reflects the well-documented trend

in inflation, which rises in the mid-1960s, declines from the early 1980s, and stabilizes near a 2%

target by the mid-1990s (see, e.g., Stock and Watson, 2016). The recent inflationary episode is

marked by a sharp increase in both average expected inflation and its long-term component, with
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a noticeable reversal in the last few observations. Inflation volatility (Figure 3b) peaks in the

mid-1970s, remaining high until the late 1980s, and is well-contained until early 2020, when it

sharply increases starting in the second quarter. Unlike the mean, inflation volatility exhibits clear

cyclicality, rising significantly during recessions.

The skewness estimates in Figure 3c indicate moderate negative skewness in the 1960s, with

increasing upside risks from the late 1960s, peaking in the late 1970s, and then declining from the

early 1980s. Upside risks persist until the mid-1990s, when the skew shifts to negative. Downside

risk dominates until the post-COVID inflationary episode, except for the period before the GFC,

where risks are balanced. The model captures a marked increase in negative skewness during

the pandemic, followed by a rapid rise in upside risk. By the end of 2020, substantial upside

risks emerge, reaching levels comparable to those seen during the Great Inflation of the 1970s by

mid-2021.

Notably, the estimated skewness during the latest inflationary episode closely resembles in

magnitude the environment of the mid-1970s, while the low and stable inflation period before

COVID mirrored the stable inflation era of the 1960s. It is worth noticing that, contrary to

the mean, where the transitory components remains highly persistent, skewness shows far less

transitory deviations. This is due to a lower estimate for the autocorrelation of the transitory

component of asymmetry compared to that of the location, but also to smaller learning rates,

which make the former less sensitive to noisy prediction errors.16

Following Equation (10), Figure 3d presents the decomposition of expected inflation into the

location (the most likely expected outcome) and the tilt induced by the balance of risks around it,

ψ. Inflation risk significantly influences inflation expectations, introducing substantial upside bias

during the 1970s and the post-COVID era. Negative skewness contributed to a downward bias in

expected inflation during the decade leading up to COVID-19. However, low inflation volatility

during this period mitigated the average effect of asymmetry on expectations, limiting its impact

to around 20 basis points, despite the markedly negative skewness.

The subdued volatility of inflation observed during this time has significant implications for

how monetary policy should address the persistent negative skewness in the post-Great Recession
16See Table E3 in Appendix E.
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Figure 4: Model-based vs rolling measures of skewness
Note: The figure reports cross-correlations between data-based and model-based measures of inflation skewness.
We report in blue the correlation between rolling quantile skewness and the estimated coefficient of asymmetry,
and in green the correlation between rolling sample skewness and the conditional skewness produced my the model.
Gray shaded areas represent NBER recessions.

era. This is an important point to which we will return in the next section.

Whereas more is known about inflation’s time-varying mean and variance (see, e.g., Stock and

Watson, 2007), our model provides novel insights into the dynamics of inflation skewness. We

compare our model-based measures of skewness (e.g., sample skewness, st, and the asymmetry

parameter, ϱt) against rolling estimates derived solely from core PCE data. Panel (a) of Figure 4

compares the sample skewness with a 5-year rolling skewness, sst, shown in green. Although

both measures exhibit similar patterns, sst is noticeably noisier due to its sensitivity to individual

observations. In the bottom figure, we contrast estimates of ϱt with a robust quantile-based

skewness measure, qst.17 The impact of outliers is particularly evident, especially the large negative

data points from the second quarter of 2020, which continue to distort qst estimates post-2021.

In contrast, model-based skewness estimates are less influenced by extreme values, due to a more

robust updating mechanism.

Furthermore, rolling estimates assume constant skewness within the sample window, making
17Incidentally, both measures are bounded between -1 and 1.
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Table 2: Out-of-sample comparison

h = 1 h = 2 h = 3 h = 4 h = 8

MSFE 0.835
(0.016)

0.854
(0.021)

0.861
(0.031)

0.859
(0.010)

0.951
(0.004)

CRPS 0.936
(0.012)

0.939
(0.011)

0.934
(0.002)

0.927
(0.004)

0.966
(0.002)

CRPS decomposition

Right 0.926
(0.019)

0.932
(0.018)

0.931
(0.010)

0.934
(0.013)

0.965
(0.071)

Left 0.949
(0.002)

0.940
(0.006)

0.937
(0.001)

0.923
(0.001)

0.962
(0.002)

Center 0.933
(0.004)

0.942
(0.011)

0.935
(0.002)

0.923
(0.005)

0.971
(0.004)

Event Forecasts

πt+h < 1.5 0.945
(0.015)

0.940
(0.005)

0.931
(0.001)

0.950
(0.026)

0.960
(0.040)

πt+h > 2.5 0.910
(0.031)

0.969
(0.089)

0.960
(0.036)

0.966
(0.032)

0.986
(0.132)

1.5 ≤ πt+h ≥ 2.5 0.939
(0.013)

0.947
(0.009)

0.947
(0.016)

0.981
(0.176)

0.940
(0.001)

Note: The table report the relative performance of Stock and Watson (2007) UCSV model against our Skt model.
Results are reported in ratios, with our model being at the numerator; values smaller than 1 imply superior predictive
accuracy of the SKt model. The out-of-sample period runs from 2000Q1 to 2024Q2. Values in bold are significant
at the 10% level.

them slow to adjust, particularly during significant inflation shifts, which poses a major challenge

for real-time risk assessment. In contrast, our model updates skewness estimates in real-time

with each new inflation release. While all measures generally align in capturing underlying risk

and its evolution, Figure 4b shows the cross-correlation between data-based measures of skewness

and lags of model-based estimates. Our skewness estimates respond to changes in inflation more

quickly, leading the rolling measures by an average of two quarters –a clear advantage for real-time

monitoring of inflation risk.

3.4 Out-of-sample performance of the model

We assess the out-of-sample forecasting performance of our model, focusing on gauging the

added value of accounting for time-varying skewness. Specifically, we set up a real-time forecasting

exercise where for each inflation vintage we produce up to twelve-step ahead forecasts for the whole
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density of core PCE inflation, starting from 2000Q1.18 We evaluate the forecasting performance of

the model against the UCSV model of Stock and Watson (2007) which represents a solid benchmark

model, widely employed to predict inflation outcomes.19 We compare the two models in their ability

to produce accurate point, density and event forecasts. Specifically, we evaluate the mean squared

forecast error (MSFE) for point accuracy and we use Gneiting and Ranjan (2011) quantile-weighted

CRPS to assess density forecasting accuracy.

These scoring rules measure the squared difference between the forecast cumulative distribution

function and the “perfect forecast”, that is a step function which moves from 0 to 1 on the realization

point. Furthermore, we evaluate the accuracy of predicting the right and left tails, and the central

body of the predictive densities.20

Results of the comparison are presented in Table 2, where we report, for each loss function and

forecast horizon, the ratio of the score achieved by our model to that of the UCSV benchmark.

Values below unity indicate superior accuracy of our preferred model. p-values for the Diebold

and Mariano (1995) test are provided in parentheses.

The results strongly support the superiority of our model over the benchmark across all horizons

and forecast exercises. Gains in point forecasts range from 25% at short horizons to 7% over the

medium term.

Smaller yet significant gains are observed in CRPS scores, with our model notably delivering

improvements of up to 8% in forecasting upside risks. These results underline the importance

of accounting for inflation skewness as a means to enhance forecasting accuracy. However, the

UCSV model not only lacks a mechanism for capturing skewness but also overlooks the presence

of fat tails in the data. To ensure that the observed gains stem specifically from modeling inflation

skewness rather than from addressing fat tails, we replicate the analysis using a specification that

excludes any asymmetry, following a similar approach to Delle Monache and Petrella (2017). The

results, reported in Appendix E, confirm our assertion that incorporating skewness is a critical

step for improving model fit and inflation forecasting accuracy.
18We start the exercise in 2000Q1 due to the availability of real-time data vintages.
19We implement the Bayesian version following Chan (2013).
20Left tail forecasts are defined up to the 25th quantile. Similarly, the right tail considers above the 95th quantile.

The remaining quantiles characterize to the center of the distribution.
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Table 3: Event forecast comparison against SPF

πQ4
t < 1.5 πQ4

t > 2.5 1.5 ≤ πQ4
t ≤ 2.5

h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4

1.196 0.892 1.159 0.893 0.853 0.164 0.335 0.599 1.177 0.895 1.327 1.125

Note: The table reports the ratio of the Brier score of our Skt model over the SPF’s for event predictions. The
target variable is Q4-over-Q4 core PCE. The evaluation sample runs from 2007Q1 due to SPF data availability.

Event forecast and comparison with SPF We now compare the ability of the competing

models to produce event forecasts. Specifically, we use the Brier score, defined as the mean

squared difference between the predicted probability of a binary outcome and its occurrence, to

evaluate predictions of events where πt+h is lower than 1.5%, greater than 2.5%, or falls within

these thresholds. The comparison with the UCVS model is reported in the bottom section of

Table 2. Again, our model provide improvements over the benchmark model, especially over the

short-horizon.

We also compare our event forecast predictions against the SPF. For this exercise, we target

Q4-over-Q4 core PCE, πQ4
t , starting in 2007Q1 to match SPF data. First, panel (a) of Figure 5

shows the interval predictions generated by our model, overlaid with the SPF projections. Our

model produces interval predictions that align closely with the SPF’s. In the bottom panels, we

plot the evolution of the predicted probability of πQ4
t being below 1.5% (Figure 5b) or above 2.5%

(Figure 5c) 6 months ahead of the realization; the predicted events are represented by the yellow-

shaded areas. These figures demonstrate that our model provides timelier assessments of event

probabilities, in that the black lines lie above the bright blue ones when predicted events realized

(yellow shaded regions). Notably, our model detects little to no probability of overshooting the

1.5–2.5% interval throughout the period between the GFC and the post-pandemic inflation surge,

while capturing the latter with greater precision.

A formal evaluation of these event predictions is summarized in Table 3, where we report the

ratios of Brier scores for our model relative to the SPF for the three events and up to four-step-

ahead predictions.21 Overall, the table indicates that our model and the SPF achieve comparable
21For h = 1, predictions are based solely on out-of-sample values. As h approaches 4, up to three observed data

points are used in the computation of Q4-over-Q4 inflation.
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Figure 5: Event forecasts
Note: The top panel report the interval forecasts produced by the Skt model. We define left tail as the probability
of inflation expectations below 1.5%, central corresponds to expectations in the [1.5%, 2.5%] interval, whereas the
right tail is defined as expectations above 2.5%. Panels (b) and (c) report a comparison of the two-step-ahead
predicted probability of Q4-over-Q4 inflation being below 1.5% and above 2.5%, repsectively; yellow shaded region
represent the events. The sample runs from 2007Q1 to 2023Q4. Gray shaded areas represent NBER recessions.

accuracy, except for P
(
πQ4
t+1 > 2.5%

)
, where our model provides more timely probability assess-

ments (see Figure 5, panel (c)). However, it is important to note that the ratios reported in the

table are based on a small sample size due to the limited availability of SPF data.

4 Quantitative structural analysis

In this section, we examine a prominent empirical DSGE model estimated using U.S. data

(Smets and Wouters, 2007). Specifically, we consider a version of the model in which price markup

shocks follow a Skew-t distribution with time-varying moments. We assume that, in each period,
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agents expect these moments to change in line with the forecasts provided by the model estimated

in the previous section. It should be noted that whereas the model we introduced in the previous

section delivers accurate and timely real-time estimates of U.S. inflation skewness, the beliefs rep-

resentation can accommodate various methods (or combinations thereof) for estimating skewness,

extending beyond our preferred model.

To study the DSGE model with changing asymmetric inflation risks, we proceed as follows.

First, we derive the beliefs representation of the asymmetric risks for this model. Second, we

calibrate the beliefs representation to match the effects of the inflation asymmetry on inflation

expectations, which we estimated in the previous section. Third, we analyze the macroeconomic

implications of introducing the RAIT – a central bank communication strategy designed to anchor

expectations to target by counteracting the effects of asymmetric risks – with particular focus on

the post-pandemic period. Finally, we compare the implications of the RAIT with those of the

FAIT, which is the current framework employed by the Federal Reserve.

Analogously to what shown in Section 2.2, to construct the beliefs representation of asymmetric

inflation risks for the Smets and Wouters (2007) model, we augment the price Phillips Curve with

a set of dummy anticipated price markup shocks as follows:22

π̂t = π1π̂t−1 + π2Etπ̂t+1 − π3µ
p
t + εpt +

J∑
j=0

φjt−j, (11)

where the variable µpt represents firms’ price mark-ups, the shock εpt stands for the actual price

markup shock, which follows a Gaussian ARMA process, and π1, π2, and π3 are the standard

parameters in this equation, as defined in Smets and Wouters (2007). The last term on the right-

hand side captures anticipated and unanticipated dummy mark-up shocks, with φjt representing the

mark-up shock revealed in period t but expected to materialize in period t+ j. These anticipated

shocks capture the effects of the skewness of the Skew-t distribution of future price markup shocks

on agents’s expectations about the realization of these shocks.
22This equation embeds an identification assumption: specifically, we assume that only expectations of future

price markup shocks drive the changes in inflation risks estimated by our forecasting model. However, this approach
can be generalized to accommodate alternative identification assumptions by incorporating a variety of dummy
anticipated shocks that contribute to these risks.
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In the beliefs representation, the expected price markup shock h periods ahead can be decom-

posed as follows:

Et

[
εpt+h +

J∑
j=0

φjt−j

]
= Et(ε

p
t+h)︸ ︷︷ ︸

mode (µp
t+h|t)

+
J∑
j=h

φjt+h−j︸ ︷︷ ︸
balance of risks (ψp

t+h|t)

, (12)

which mimic the structure of Equation (10), since we assumed that price markup shocks distribute

as a Skew-t distribution. The balance-of-risks term on the right of the decomposition captures the

effects of skewness in the distribution of the shocks on their expected value.

It then follows that the time-t revision to agents’ expectations about the realization of the price

markup shock h periods ahead is given by

Et − Et−1

[
εpt+h +

J∑
j=0

φjt−j

]
=

(
µpt+h|t − µpt+h|t−1

)
+ φht . (13)

Note that effects of the revision to the skewness from period t − 1 to period t on the expected

value of the shock in period t+ h are captured by the dummy anticipated shock, φht .

How to make sure that the beliefs representation match the estimated effects of the balance

inflation risks on expectations? First, realize that since all shocks (the seven structural shocks of

the Smets and Wouters (2007) model plus the J +1 dummy shocks) are normally distributed, the

linear approximation of the model in its beliefs representation can, therefore, be solved quickly

and efficiently using off-the-shelf techniques. The solution of the model is standard and can be

expressed as follows:

st = Γst−1 + Ωεt, (14)

where the vector st contains the model’s state variables, and the vector εt includes all shocks of

the beliefs representation of the model. The matrices Γ and Ω are the solution matrices, which

depend on the structural parameters of the model.

Second, we have to align the beliefs representation to match the inflation asymmetry estimated
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in the previous section. To achieve this, we find the vector of J+1 dummy surprise and anticipated

shocks that satisfy the following system of J + 1 linear equations:



−
∑J

j=1 φ
j
t−j

ψt+1|t − ψt+1|t−1

...

ψt+J |t − ψt+J |t−1


=

 1 01×J

ΩS ΩN




φ0
t

φ1
t

...

φJt


, (15)

where ΩS and ΩN represent the contemporaneous effects of surprise and anticipated dummy

markup shocks on inflation expectations in the model.

The first equation ensures that the effects of dummy anticipated shocks remain confined to the

realm of beliefs and never materialize into an actual shock to the markup. As noted in Section 2, the

function of these shocks is solely to capture the effects of asymmetric risks on agents’ expectations.

The first term on the left-hand side aggregates all past anticipated shocks expected to affect the

economy in the current period, t. The equation imposes that the surprise dummy shock, φ0
t , fully

offsets these past anticipated shocks. In this sense, the dummy anticipated shocks in the beliefs

representation can be interpreted as pure beliefs or sentiments.

Moving to the last J equations and starting from left-hand side, ψt+j|t − ψt+j|t−1, with j ∈

{1, . . . , J}, denote the revisions to the mean-mode inflation wedge estimated by the forecasting

model – Equation (10) – in the data. On the right-hand side, we have the surprise and anticipated

dummy markup shocks. The anticipated shocks
{
φjt

}J
j=1

are multiplied by the matrix ΩN which

returns the effects of these shocks on inflation expectations at each horizons (1, ..., J). So in the

last J equations, we are imposing that the dummy anticipated shocks moves inflation expectations

to match the revisions to the mean-mode inflation wedge estimated in the data at any horizon one

through J quarters out. As explained earlier, the surprise shock that is meant to wipe out the

effects of the past anticipated shocks has an effect on inflation expectations, which we have to take

into account. These effects are captured by the vector ΩSφ0
t .

We solve these system of linear equations in Equation (15) to obtain the realization of dummy

surprise and anticipated price markup shocks,
{
φjt

}J
j=0

, that allows the beliefs representation to
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exactly match the effects of the estimated revisions to inflation skewness on agents’ inflation

expectations in every period of our estimation sample.

The next step is to introduce the RAIT, which is defined as a central bank communication

strategy designed to anchor expectations to target by counteracting the effects of asymmetric

risks we estimated in the data on inflation expectations. Under the RAIT, average inflation over

the medium run aligns with the central bank’s target, provided that the distribution of inflation

outcomes is accurately estimated for every period and horizon.

Implementing the RAIT requires the central bank to tilt the expected central inflation scenario

to counter the direction of the perceived risks. Specifically, if the balance of risks suggests upward

inflation pressures, the central bank would temporarily aim to undershoot its target. Conversely,

if the balance of risks points to downward inflation pressures, the central bank would temporarily

try to overshoot its inflation target.

We take two simple steps to practically implement the RAIT in the Smets and Wouters (2007)

model with time-varying balance of inflation risks. First, we enhance the monetary policy reaction

function as follows:

r̂t = ρr̂t−1 + (1− ρ)

rxx̂t + r∆x∆x̂t + rπ

π̂t −
J∑
j=1

π̂⋆t|t−j︸ ︷︷ ︸
π̂RAIT
t



+ εrt , (16)

where the variable π̂⋆t|t−j represents the forward guidance shocks that capture the central bank’s

communications in period t − j regarding its intention to overshoot or undershoot the inflation

target. Meanwhile, the variable π̂RAIT
t denotes the magnitude of the overshoot or undershoot in

period t as announced in the central bank’s past communications. A negative (positive) value of

π̂RAIT
t+h indicates the central bank’s intention to undershoot (overshoot) its inflation target h periods

from now. In the model, the inflation target is set by a fixed parameter calibrated to align with a

2% annualized inflation rate. The variables r̂t, x̂t, and ∆x̂t denote the nominal interest rate, the

output gap, and the first difference of the output gap, respectively, in log deviations from their

steady-state value. The parameters in the monetary policy rule are standard and defined in Smets
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and Wouters (2007).

Second, under the RAIT, in each period t, the central bank communicates revisions to its

overshooting or undershooting policy in response to changes in the balance of inflation risks and

their impact on agents’ expectations, as estimated from the data in Section 3. These impacts,

denoted as ψt+j|t−ψt+j|t−1, could lead to a de-anchoring of inflation, which the central bank seeks

to prevent by updating markets on its future intention to overshoot or undershoot its long-run

inflation target. When implemented effectively, these communications fully offset the effects of the

changing balance of inflation risks on expectations, thereby restoring the anchoring of inflation

expectations.

To obtain this communication strategy in the beliefs representation of the Smets and Wouter’s

model, we require the sequence of forward guidance shocks, {π̂⋆t+j|t}Jj=0 to satisfy the following

system of J linear equations:

−



ψt+1|t − ψt+1|t−1

ψt+2|t − ψt+2|t−1

...

ψt+J |t − ψt+J |t−1


= ΩFG



π̂⋆t+1|t

π̂⋆t+2|t
...

π̂⋆t+J |t


, (17)

The J × J matrix ΩFG captures the impact response of the sequence of forward guidance shocks

issued at time t on current inflation expectations (from 1 quarter through J periods ahead). This

matrix can be readily obtained by solving the beliefs representation of the Smets and Wouters

(2007) model, augmented with the monetary policy rule that includes forward guidance shocks,

{π̂⋆t+j|t}Jj=1 – see Equation (16). The solution to such a model can be obtained using standard

solvers for linear Rational Expectations models, such as Dynare. The vector on the left-hand side

represents the effects of the estimated revisions to the balance of risks on inflation expectations, as

defined in Equation (10). The system of equation imposes that the shocks capturing the forward

guidance issued in period t under the RAIT – {π̂⋆t+j|t}Jj=1 – are chosen by the central bank so as

to offset these effects. Hence, the vector capturing these effects enters with a negative sign.

The sequence of forward guidance shocks solving the system of linear equations in Equation (17)
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ensures that the estimated balance of inflation risks has no effect on expectations. If the central

bank shapes its forward guidance according to the RAIT, inflation expectations will remain an-

chored at all horizons, and average inflation will converge to the target in the medium term, as

the effects of inflation skewness on inflation expectations are fully neutralized by the strategy.

An alternative way to interpret forward guidance under the RAIT. The implementa-

tion of the RAIT does not necessarily require communication about temporary overshooting or

undershooting of the inflation target. Technically, the forward guidance shocks {π̂⋆t+j|t}Jj=0, appro-

priately rescaled by −(1 − ρ)rπ, can be interpreted as stochastic upward or downward shifts in

the intercept of the reaction function, affecting the expected future path of interest rates. In the

case of the RAIT, these shifts are tied to the central bank’s assessment of the balance of inflation

risks. The changes in the future interest rate path would, therefore, be driven by forward guidance,

designed to inform the public about the appropriate reaction function required to counterbalance

variations in the balance of inflation risks.

4.1 The RAIT in the post-pandemic era

The first counterfactual exercise illustrates how the central bank would have communicated its

future policy actions under the RAIT during the challenging period of the post-pandemic inflation

surge.23 In this exercise, we align the beliefs representation to match the forecasts of the mean-

mode wedge estimated using the Skew-t model introduced in Section 3. This involves setting the

dummy surprise and anticipated price markup shocks to satisfy Equation (15). We choose an

horizon of five years when solving that system of equations; that is, J = 20 quarters.

In Figure 6, we illustrate how the beliefs representation translates predictions of the balance

of risks for inflation into communications about the path of future interest rates, or forward

guidance.24

23Estimates reported in Smets and Wouters (2007) cover the period 1966–2004, during which the authors estimate
a Phillips curve slope of approximately 0.03. However, many studies suggest that the slope of the Phillips curve
during the recent inflation surge was significantly steeper. We therefore calibrate the parameters feeding into the
Phillips curve to achieve a slope of approximately 0.3.

24For this exercise, we applied a moving average to the estimated balance of risks to smooth out the noise
introduced by the forecasting model, which is particularly evident when one wants to estimate the skewness during
such an unprecedented high-volatility period. Arguably, policymakers would assess the dynamics of inflation risks
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Figure 6: Forward guidance under the RAIT
Note: The figure reports the forward guidance on the policy rate recommended by the RAIT (left axis) from 2018
to 2024Q2, again the balance of inflation risk (right axis), estimated from the model introduced in Section 3. Gray
shaded areas represent NBER recessions.

In Figure 6, the blue solid line represents the inflation overshoot communicated over the past

four quarters to offset the effects of the balance of risks estimated during that period (the solid

gray line with blue diamond markers.) Since forward guidance typically refers to the likely path

of future interest rates, we express these revisions in interest rate units. Specifically, the solid blue

line is computed as follows:

Forward guidance at time t = −(1− ρ)rπ

4∑
j=1

π̂⋆t+j|t,

where the coefficients ensure that the forward guidance shocks are appropriately mapped into the

interest rate space.

The solid black line depicts the observed federal funds rate, the policy rate controlled by the

Federal Reserve. The solid gray line with blue diamond markers represents the estimated revisions

to the current balance of risks, ψt|t − ψt|t−1, obtained from the forecasting model introduced in

Section 3. The balance of risks is expressed in inflation units and, hence, is mapped to the right

using a combination of model averaging and judgment, especially in periods of heightened macroeconomic volatility,
such as the post-pandemic era. The smoothing applied to the balance of risks reflects this consideration.
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axis of the chart.

Our model’s real-time assessment of the rapid changes in the balance of risks during the second

half of 2020 leads the RAIT to recommend increasingly hawkish communication of the central

bank’s policy stance through early 2022. This hawkish forward guidance is somewhat mitigated in

the following year, becoming essentially neutral by 2024, when risk assessments are considerably

more balanced.

Comparing forward guidance with the actual path of the federal funds rate suggests that the

central bank began raising the policy rate with some delays compared to what the RAIT would

have suggested. Conversely, the RAIT would have recommended the central bank start lowering

rates slightly earlier than observed.

As we will show, this delay in lowering the interest rate is broadly consistent with the recom-

mendations of the Federal Reserve’s framework. Specifically, this delay reflects the FAIT’s limited

adaptability to changes in the stochastic environment of inflation, a limitation that the RAIT seeks

to address through real-time assessment of the skewness in the probability distribution of future

inflation outcomes. We will return to this critical point in subsequent discussions.

In Figure 7, we show the counterfactual policy rate implied by the RAIT alongside the actual

policy rate. The counterfactual rate is computed by first simulating the interest rate from the

beliefs representation of the model using only the forward guidance shocks solving Equation (17),

and then adding the observed federal funds rate to it. This approach is appropriate because the

beliefs representation of the model is linear.

Starting in mid-2021, the RAIT-consistent policy rate exceeds the actual policy rate. This

positive gap reflects the prevailing upside risks to inflation, which necessitate tighter monetary

policy to counter the impact of more likely future inflation spikes on agents’ current inflation

expectations.

A substantial tightening is prescribed in 2022, following a strong resurgence of inflation after a

brief quarter of slower price growth. It is important to note that the estimation of the skewness in

the inflation distribution is conducted in real time, making abrupt revisions of risks more frequent

– particularly in periods of heightened volatility, such as the post-pandemic era.
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Figure 7: RAIT-consistent policy rates
Note: The figure reports the policy rate consistent with the RAIT framework against the actual policy rate. Gray
shaded areas represent NBER recessions.

At the peak of the monetary policy response, the RAIT prescribes a policy rate of approximately

5.5%. Notably, the peak of the tightening is remarkably similar to the level ultimately chosen by

the Federal Open Market Committee (FOMC), even though the RAIT would have prescribed

starting the tightening sooner and reaching that peak two quarters earlier. Moreover, consistent

with the forward guidance analysis shown in Figure 6, the RAIT would have recommended a more

rapid unwinding of the tightening. This pattern reflects the swift retrenchment of positive inflation

risks, as estimated in real time by our econometric model.

4.2 FAIT vs. RAIT

We now compare the implications of adopting the FAIT or the RAIT for the central bank’s

communications. Both strategies aim to counterbalance asymmetric inflation risks by clarifying to

the public that the central bank may tolerate an overshooting or undershooting of inflation relative

to the 2% target in the short run.

One of the reasons behind the Federal Reserve’s adoption of the FAIT was the heightened risk

of encountering the ZLB constraint, driven by the low interest rate environment of the past decade
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(Clarida, 2022). This limited the central bank’s ability to stabilize the economy during recessions,

tilting the balance of inflation risks to the downside. In this context, the FAIT serves as a strategy

whose objective is to counterbalance this balance of risks by enabling the central bank to convey

its willingness to tolerate an overshoot of inflation for a period of time.

Similar to the RAIT, the FAIT aims to shift the distribution of inflation outcomes to counter the

balance of inflation risks and reanchor inflation expectations to the desired central bank’s target.25

However, the two strategies differ in the conditionality underlying their respective communications

regarding the opportunity to overshoot or undershoot the target. Under the FAIT, the central

bank seeks to overshoot the target if the repeatedly binding ZLB constraint has lowered the past

average inflation rate. In contrast, under the RAIT, the central bank communicates its intention to

overshoot the target if the balance of inflation risks – estimated through models or policymakers’

judgment – is tilted to the downside.

Under the FAIT, the central bank decides on its temporary inflation overshoot by accounting for

past deviations of inflation from the 2% medium-run inflation target. Specifically, we operationalize

the FAIT target (π̄FAIT
t ) by evaluating its effects on the monetary policy stance:

π̂FAIT
t = ρF π̂

FAIT
t−1 −

(
πData
t − π̄

)
, (18)

where πData
t stands for the inflation rate observed in the data and π̄ represents the 50 basis point

inflation target, corresponding to 2% annual inflation. Thus, the elements within the round brack-

ets on the right-hand side capture the current miss of inflation relative to the 2% target. We

set the autocorrelation parameter ρF to 0.75. A positive value of π̂FAIT
t indicates that, under the

FAIT, the central bank would aim for an inflation overshoot to counteract the prevailing negative

inflationary pressures observed in past years. The monetary policy rule under the FAIT is given
25The FAIT adopted by the Federal Reserve in August 2020 was asymmetric, as it did not account for the

possibility of undershooting the FOMC’s inflation objective. In this analysis, we consider a symmetric FAIT
framework, as we examine an environment where inflation risks may be unbalanced either to the upside or the
downside.
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by:

r̂t = ρrt−1 + (1− ρ)
[
rxx̂t + r∆x∆x̂t ++rπ

(
π̂t − π̂FAIT

t

)]
+ εrt . (19)

In Figure 8, we compare the FAIT parameter, which captures the average of past inflation

misses, π̂FAIT
t , with the RAIT parameter, π̄RAIT

t , which reflects the average revisions to the inflation

target over a J-period horizon, induced by forward guidance provided at time t.

π̄RAIT
t =

1

J

J∑
j=1

Et − Et−1

(
π̂RAIT
t+j

)
=

1

J

J∑
j=1

π̂⋆t+j|t

The FAIT parameter in the plot was largely positive during the past decade when U.S. inflation

consistently ran below target. Under the FAIT, the central bank would have been required to

communicate its intention to create an inflation overshoot. In contrast, the predictions of the

RAIT are very different. The RAIT would not have required an inflation overshoot to achieve this

goal.

The reason lies in the RAIT’s focus on the effects of the balance of risks on inflation – captured

by the wedge shown in Equation (10). As indicated in that equation, the wedge remains small if

the volatility, represented by the scale parameter σ, is low. When the predictive distribution of

inflation is not highly diffuse (low σt), the impact of its shape – ϱt – on inflation expectations is

muted. During the past decade, although the predictive distribution was negatively skewed due to

continuous inflation misses, inflation volatility reached historical lows. As a result, the mean-mode

wedge in Equation (10) – ψt – was small.

Consequently, the RAIT would have recommended maintaining the Federal Reserve’s symmet-

ric framework in the past decade, without requiring any adjustments to address negative skewness

in inflation outcomes. This is always the case when inflation volatility is low.

The FAIT parameter lags behind the RAIT parameter during the inflationary surge of 2021,
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Figure 8: FAIT vs. RAIT
Note: The figure reports the changes in the temporary inflation target implied by the FAIT (the pink solid line
with blue circle markers) and the RAIT (the green line). Gray shaded areas represent NBER recessions.

reducing the proactiveness of monetary policy. The FAIT is more backward-looking and less

responsive to evolving stochastic conditions affecting future inflation dynamics than the RAIT.

When the distribution of inflation outcomes shifts rapidly, the FAIT is slower than the RAIT in

providing the central bank with the appropriate policy stance.

At the end of the sample period, the FAIT entirely misses the quick re-balancing of inflation

risks. In contrast, the RAIT, with its greater adaptability, would have enabled the central bank

to promptly communicate a shift in the balance of inflation risks, justifying monetary easing as

early as the beginning of 2023. This more favorable balance of risks was detected in real time by

the econometric model presented in Section 3.

The RAIT emphasizes communicating the evolution of the balance of inflation risks to provide

clarity on future policy decisions. Implementing the RAIT requires access to multiple models to

reliably assess changes in the balance of inflation risks. Additionally, our econometric model can be

enhanced with predictors such as fiscal policy measures, labor market prices, geopolitical indices,

and commodity price indices to construct scenario analyses that further support forward-looking

communications by a central bank adopting the RAIT.

De Polis et al. (2023) illustrate how incorporating macroeconomic and financial predictors
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into the forecasting model enhances its ability to predict changes in the balance of inflation risks

accurately, thereby improving its practical utility for the RAIT implementation.

5 Concluding remarks

This paper investigates the relevance of time-varying inflation skewness and its implications for

monetary policy. Our analysis reveals that inflation skewness has shifted significantly over time,

often exhibiting persistent, regime-like behavior. Using a time series model capable of estimating

the full predictive distribution of U.S. core PCE inflation, we highlight how these shifts affect

the balance of inflation risks and improve forecasting accuracy, particularly during periods of

heightened volatility.

We explore the implications of these findings within the framework of optimal monetary pol-

icy. Time-varying skewness introduces a stochastic wedge between the expected value and modal

forecast of inflation, altering equilibrium allocations and prices in the model. Optimal monetary

policy requires the central bank to actively “lean against” these risks by shifting the modal inflation

scenario in the opposite direction of the balance of risks. This strategy mitigates the impact of

inflation skewness on expectations, helping to stabilize both inflation and the output gap.

To operationalize these insights, we use a quantitative macroeconomic model to evaluate a new

monetary policy strategy we call the Risk-Adjusted Inflation Targeting or the RAIT. The RAIT

relies on real-time assessments of inflation risks and enables the central bank to communicate tem-

porary overshoot or undershoot to its inflation target, countering asymmetric risks while anchoring

long-term inflation expectations.

Our counterfactual analysis shows two interesting results. First, unlike the FAIT, which would

have required the central bank to aim for an inflation overshoot during the past decade of below-

target inflation, the RAIT would not have prescribed such a communication strategy. This is

because the RAIT accounts for the balance of inflation risks, where low volatility diminishes

the impact of skewness on inflation expectations. Consequently, the RAIT would have supported

maintaining the Federal Reserve’s symmetric framework during periods of historically low inflation

volatility. Second, the RAIT would have prescribed an earlier and more aggressive tightening
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during the recent inflation surge, followed by timely rate reductions as inflation risks rebalanced.

Overall, this paper underscores the importance of accounting for time-varying inflation skewness

in monetary policy design. By incorporating real-time risk assessments and leaning against inflation

risks, central banks can more effectively manage macroeconomic stability. Future research could

refine these strategies by integrating additional predictors and exploring alternative methods of

implementing and communicating the RAIT in practice.
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A Solving the New Keynesian model with mark-up shock

In this appendix, we provide detailed derivations of the solutions for the optimal monetary

problem under asymmetric risks, outlined in Section 2. This problem is derived in the basic New

Keynesian model presented in Chapter 3 of Galí (2008). In this model, the output gap and inflation

in deviations from steady state are governed by a standard IS and a Phillips curve

σx̂t = σEtx̂t+1 − ît + Etπ̂t+1, (A1)

π̂t = βEtπt+1 + κx̂t + ut, (A2)

where σ denotes the coefficient of relative risk aversion, β is the deterministic discount factor of

households, and κ is the slope of the Phillips curve. The process driving price markups ut can be

expressed as follows:

ut = ρuut−1 + εut (A3)

where ut ∼ iidF (0, σu,t) is a shock to the price markup, with F (0, σu,t) being a general (unimodal)

symmetric distribution, usually assumed to be the Normal distribution.

We assume that the central bank commits, with full credibility, to a policy plan consistent

with a quadratic objective function in inflation deviations, π̂t and the output gap, x̂t. Therefore,

optimal monetary policy consists in choosing the state-contingent {π̂t, x̂t}∞t=0 that minimizes

1

2
E0

∞∑
t=0

βt
(
π̂2
t + αxx̂

2
t

)
,

subject to the sequence of constraints imposed by the Phillips curve above. Casting the problem

into its Lagrangian form

L = E0

∞∑
t=0

βt
[
1

2

(
π̂2
t + αxx̂

2
t

)
+ γt (π̂t − κx̂t − βπ̂t+1)

]
,
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and differentiating with respect to x̂t and π̂t yields the optimality conditions

αxx̂t − κγt = 0

π̂t + γt − γt−1 = 0

that must hold for t = 0, 1, 2, ...; We set γ−1 = 0 in that Phillips curve constraint is not binding in

period −1 for the central bank choosing the optimal plan in period 0.

Standard manipulations yield the following optimality conditions,

x̂0 = − κ

αx
π̂0,

x̂t = x̂t−1 −
κ

αx
π̂t, ∀t.

Define p̄t = pt − p−1 as the inflation rate over period 0 through period t, where pt denotes the log

of the price level at time t. We can now write the optimal targeting rule under commitment as

x̂t = − κ

αx
p̄t, (A4)

such that the optimizing central bank keeps output below or above the efficient level in propor-

tion to the deviations of the price level from its implicit target. Plugging Equation (A4) into

Equation (A2) we can recast the Phillips curve in as

p̄t = ap̄t−1 + aβEtp̄t+1 + aut (A5)

with a ≡ αx

αx(1+β)+κ2
.
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A.1 The symmetric case

The stationary solution to Equation (A5) can be obtained by using the method of undetermined

coefficients by conjecturing a solution of the form

p̄t = ηp̄t−1 + λut, (A6)

such that the expected value of the next period’s price level is

Etp̄t+1 = ηp̄t + λρuut. (A7)

Substituting the expectations implied by the stationary solution yields

p̄t = ap̄t−1 + aβ (ηp̄t + λρuut) + aut

p̄t =
a

1− aβη︸ ︷︷ ︸
η

p̄t−1 + a
1 + βλρu
1− aβη︸ ︷︷ ︸

λ

ut

Solving for η and λ, we obtain

η =
1−

√
1− 4βa2

2aβ
, (A8)

λ =
a

1− aβ(η + ρu)
, (A9)

and we can express the equilibrium process for the output gap as

x̂t = ηx̂t−1 −
κ

αx
λut, (A10)

for t = 1, 2, ..., with x̂0 = − κ
αx
λu0.

A.1.1 Implementation

We assume that the price mark-up shocks are iid (ρu = 0) throughout this section.

48



The IS equation reads

σx̂t = σEtx̂t+1 − ît + Etπ̂t+1,

and let us express this in terms of the price level

σx̂t = σEtx̂t+1 − ît + Etp̄t+1 − p̄t.

The optimality condition in Equation (A4) allows us to write the IS curve as

[
1− σ

κ

αx

]
p̄t =

[
1− σ

κ

αx

]
Etp̄t+1 − ît.

Now, substituting the implied expectation derived in Equation (A7), and recalling that ρu = 0, we

obtain the following optimal monetary rule:

ît = − (1− η)

[
1− σ

κ

αx

]
p̄t. (A11)

To ensure determinacy, we need to replace p̄t with its law of motion. Starting from Equa-

tion (A6),26

p̄t =
t∑

k=0

ηk+1ut−k;

substituting into the optimal rule and adding a subtracting ϕpp̄t yields

ît = −
(
ϕp + (1− η)

[
1− σ

κ

αx

]) t∑
k=0

ηk+1ut−k + ϕpp̄t.

Provided that ϕp > 0, the system of equations comprising the IS equation, the Phillips curve, and

the optimal monetary rule in the above specification admits a unique stable rational expectations

equilibrium (see, e.g., Galí, 2008).
26It can be shown that λ = η when ρu = 0.
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A.2 The asymmetric case

Let us now assume that the stochastic process driving the markup shock (Equation (A3)) is no

longer symmetric. That is, let the shocks be ε̃ut ∼ iidF(0, σu,t, ϱu,t), where F(0, σu,t, ϱu,t) represents

a general (unimodal) distribution, which features asymmetry about 0 when ϱu,t ̸= 0.

We now propose to represent the asymmetric shocks ε̃ut as the linear combination of the sym-

metric shock εut and two news shocks,

ut = ρuut−1 + εut +
(
ψ0
t + ψ1

t−1

)
, (A12)

where ψjt is a shock known in period t and that will have affect in period t+j. For this representation

to hold we impose the restriction ψ0
t+1 = −ψ1

t , where ψ1
t represents a surprise shock which agents are

not aware of; we call this the beliefs representation of asymmetric risk. Here, we are considering the

case where the distribution of the markup process is expected by economic agents to be skewed by

just one period (i.e., in period t agents expect the distribution to be back to symmetric – ϱu,t+j = 0

for j > 1). However, this can be easily generalized to multiple periods.

Notice that now the expected value of the shock is potentially nonzero, for Etεut+1 = ψ1
t , where

ψ1
t ∼ N (0, σ2

1), and the expectation of next period’s markup is given by Etut+1 = ρuut + ψ1
t . Due

to this asymmetry, next period’s price level, Etp̄t+1, are potentially distorted. We recompute the

price process as above:

p̄t = ηp̄t−1 + λut + ζψ1
t , (A13)

and it follows that Etp̄t+1 = ηp̄t + λ (ρuut + ψ1
t ), since Eut+1 = ρuut + ψ1

t and Etψ
1
t+1 = 0.

Substituting the expectations implied by the stationary solution yields

p̄t = ap̄t−1 + aβ
[
ηp̄t + λρuut + λψ1

t

]
+ aut,

p̄t =
a

1− aβη︸ ︷︷ ︸
η

p̄t−1 + a
1 + βλρu
1− aβη︸ ︷︷ ︸

λ

ut +
aβλ

1− aβη︸ ︷︷ ︸
ζ

ψ1
t .
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Solving for η, λ and ζ we obtain

η =
1−

√
1− 4βa2

2aβ
,

λ =
a

1− aβ(η + ρu)
,

ζ =
aβλ

1− aβη
.

It follows that the equilibrium process for the output gap is

x̂t = ηx̂t−1 −
κ

αx

[
λut + ζψ1

t

]
, (A14)

and x̂0 = − κ
αx

[λu0 + ζψ1
t ] .

A.2.1 Implementation

Again, let us assume ρu = 0 and let us rewrite the IS equation in terms of the price level under

asymmetry and substitute the optimality condition such that

[
1− σ

κ

αx

]
p̄t =

[
1− σ

κ

αx

]
Etp̄t+1 − ît.

Substituting the expectation for the price level under asymmetry, and recalling that ρu = 0, we

obtain the optimal monetary rule under asymmetry :

ît = − (1− η)

[
1− σ

κ

αx

]
p̄t +

[
1− σ

κ

αx

]
λψ1

t ,

where the first term in the right-hand side is the same as in Equation (A11), and the last term

captures how the the central bank needs to adjust the policy rate to take into the expectation bias

due to asymmetric risks.

As before, we ensure determinacy by substituting into the rule the law of motion for p̄t,

p̄t =
t∑

k=0

ηk+1
(
ut−k + ψ1

t−k
)
,
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to obtain

ît = −
(
ϕp + (1− η)

[
1− σ

κ

αx

]) t∑
k=0

ηk+1
(
ut−k + ψ1

t−k
)
+ ϕpp̄t +

[
1− σ

κ

αx

]
λψ1

t .

A.3 Asymmetric case with an unwitting central bank

We now consider the case in which the distribution of price markups are skewed but the central

bank does not take this into account (or it does not know) and adopts the optimal policy under

the incorrect assumption about shocks distributions. Markup shocks’ asymmetry is captured by

agents receiving surprises ψ1
t , tilting their expectations about future realizations of the shocks away

from the central scenario (ρuut−1) in every period t. We compare this scenario against the case of

optimal monetary policy under symmetry.27

We start from the optimality condition between output gap and inflation

x̂t = − κ

αx
p̄st , (A15)

where pst is the price level under full symmetry (ψ0
t = 0 in very period) defined

p̄st = ηp̄t−1 + λut; (A16)

note that this is not exactly the same price level as in fully symmetric case (p̄t), in that past

suboptimal price levels, p̄t−1, are a given for the optimizing central bank.

We write the Phillips curve in terms of the price level,

(1 + β)p̄t = p̄t−1 + κx̂t + βEtp̄t+1 + ut,

and we conjecture that the difference between the two prices under symmetry that the central
27This exercise can be interpreted as the asymmetric case under the counterfactual assumption that the central

bank does not try to lean against the asymmetry in the dynamics of the price level.
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bank takes into account when solving its optimal problem is

p̄t − p̄st = τψ1
t .

By plugging this equation into the optimality condition in Equation (A15), and substituting into

the Phillips curve expressed in terms of price level yields

p̄t = ap̄t−1 + aβEtp̄t+1 + bτψ1
t + aut (A17)

with a ≡ αx

αx(1+β)+κ2
and b ≡ κ2

αx(1+β)+κ2
.

As before, we conjecture the stationary solution, retrieve expectations of next period’s price

level and plug these into Equation (A17) to obtain

p̄t =
a

1− aβη︸ ︷︷ ︸
η

p̄t−1 + a
1 + βλρu
1− aβη︸ ︷︷ ︸

λ

ut +
aβλ+ bτ

1− aβη︸ ︷︷ ︸
ζ

ψ1
t .

Solving for the coefficients we obtain

η =
1−

√
1− 4βa2

2aβ

λ =
a

1− aβ(η + ρu)

ζ =
aβλ+ bτ

1− aβη

We recover τ by taking the difference between the price level, p̄, and the price level under the

symmetric policy – Equation (A16). Specifically,

p̄t − p̄st =
aβλ+ bτ

1− aβη︸ ︷︷ ︸
τ

ψ1
t ,
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which leads to

ζ = τ =
aβλ

1− aβη − b
. (A18)

The equilibrium process for the output gap is

x̂t = − κ

αx
p̄st , (A19)

for t = 1, 2, .... It should be noted that the central bank that overlooks the importance of the

imbalance of risks will end up setting an output gap as a function of p̄st . However, this price

level is not achievable by the central bank because of the balance of inflation risks, resulting in a

suboptimal output gap and in a price level that is different from that targeted by the central bank,

p̄st . Therefore,

x̂t ̸=
κ

αx
p̄t. (A20)

It should be noted that the output gap initially chosen by the central bank is the same as that

chosen in the first case. This is because the price level targeted by the central bank, p̄st , is exactly

the same as the price level target by the symmetric central bank in the symmetric case.28 However,

in the subsequent periods the output gap starts diverging in the two economies as the previous

period’s price level is different due to the skewness of the shocks distribution.

28We assume that in period t = −1, the economy is at the deterministic steady state equilibrium where risks are
fully balanced, ψ1

−i = 0, i = −1,−2, ....
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B Score-driven framework

B.1 Score derivations

The scaled score st is a non-linear function of past observations and past parameters’ values.

For ℓt = logD(θ, ft) being the Skew-t of Gómez et al. (2007), yt|Yt−1 ∼ Sktν(µt, σ
2
t , ϱt), the log-

likelihood takes the form

ℓt(rt|θ,Ft−1) = log C(ν)− 1

2
log σ2

t −
1 + ν

2
log

[
1 +

ε2t
ν(1 + sgn(εt)ϱt)2σ2

t

]
, (B1)

log C(ν) = log Γ

(
ν + 1

2

)
− log Γ

(ν
2

)
− 1

2
log ν − 1

2
log π,

where Γ(·) is the Gamma function, sgn(·) is the sign function, and ν > 3 are the degrees of freedom.

Differentiating (B1) with respect to location, scale and asymmetry we obtain the gradient vector

∇t =
[
∂ℓt
∂µ
, ∂ℓt
∂σ2

t
, ∂ℓt
∂ϱt

]′
. Recall that εt = yt − µt, ζt = εt

σt
and let

f(µt, σ
2
t , ϱt) = 1 +

ε2t
ν(1 + sgn(εt)ϱt)2σ2

t

=
ν(1 + sgn(εt)ϱt)

2σ2
t + ε2t

ν(1 + sgn(εt)ϱt)2σ2
t

To avoid overburdening the notation, in what follows ∂f(x)
∂x

= f ′
x and a = −1+ν

2
. The score with

respect to the location parameter reads

∂ℓt
∂µt

= wt
ζt
σt
, with wt =

ν + 1

ν (1 + sgn (εt) ϱt)
2 + ζ2t

.

Proof. Define

g(µt) = a log f(µt, σ
2
t , ϱt),

such that ∂ℓt
∂µt

= ∂g(µt)
∂µt

= a
f ′µt

f(µt,σ2
t ,ϱt)

. For

f ′
µt = − 2

ν(1 + sgn(εt)ϱt)2σ2
t

εt,
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it follows:

∂ℓt
∂µt

=
1 + ν

2

2

ν(1 + sgn(εt)ϱt)2σ2
t

· εt ·
ν(1 + sgn(εt)ϱt)

2σ2
t

ν(1 + sgn(εt)ϱt)2σ2
t + ε2t

=
(1 + ν)

ν(1 + sgn(εt)ϱt)2σ2
t + ε2t

εt

= ωt
ζt
σt

.

The score with respect to the squared scale parameter reads

∂ℓt
∂σ2

t

=
(wtζ

2
t − 1)

2σ2
t

.

Proof. Define

g(σ2
t ) = − log σ2

t

2
+ a log f(µt, σ

2
t , ϱt),

such that ∂ℓt
∂σ2

t
=

∂g(σ2
t )

∂σ2
t

= − 1
2σ2

t
+ a

f ′
σ2
t

f(µt,σ2
t ,ϱt)

, with f ′
σ2
t
= − ε2t

ν(1+sgn(εt)ϱt)2σ4
t
. It follows that:

∂ℓt
∂σ2

t

= − 1

2σ2
t

− 1 + ν

2
·
[
− ε2t
ν(1 + sgn(εt)ϱt)2σ4

t

· ν(1 + sgn(εt)ϱt)
2σ2

t

ν(1 + sgn(εt)ϱt)2σ2
t + ε2t

]
= − 1

2σ2
t

− 1 + ν

2
·
[
− ε2t
σ2
t

· 1

ν(1 + sgn(εt)ϱt)2σ2
t + ε2t

]
= − 1

2σ2
t

+
wtζ

2
t

2σ2
t

=
(wtζ

2
t − 1)

2σ2
t

.

The score with respect to the shape parameter reads as

∂ℓt
∂ϱt

=
sgn(εt)

(1 + sgn(εt)ϱt)
wtζ

2
t .

Proof. Define

g(ϱt) = a log f(µt, σ
2
t , ϱt),
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such that ∂ℓt
∂ϱt

= ∂g(ϱt)

∂σ2
t

= a
f ′ϱt

f(µt,σ2
t ,ϱt)

, with f ′
ϱt = − 2(sgn(εt)+ϱt)ε2t

ν(1+sgn(εt)ϱt)4σ2
t
. It follows that:

∂ℓt
∂ϱt

=
1 + ν

2
· 2(sgn(εt) + ϱt)ε

2
t

ν(1 + sgn(εt)ϱt)4σ2
t

· ν(1 + sgn(εt)ϱt)
2σ2

t

ν(1 + sgn(εt)ϱt)2σ2
t + ε2t

=
(sgn(εt) + ϱt)ε

2
t

(1 + sgn(εt)ϱt)2
wt
σ2
t

=
sgn(εt)

(1 + sgn(εt)ϱt)
wtζ

2
t

.

B.2 Scaled scores

Given we model γt = log σt and δt = atanh(ϱt), for the chain rule we have:

∂ℓt
∂γt

=
∂ℓt
∂σ2

t

∂σ2
t

∂γt
,

∂ℓt
∂δt

=
∂ℓt
∂ϱt

∂ϱt
∂δt

, (B2)

where ∂σ2
t

∂γt
= 2σ2

t and ∂ϱt
∂δt

= (1 − ϱ2t ). We can thus define the vector of interest as ft = (µt, γt, δt)
′

with the associated Jacobian matrix

Jt =
∂(µt, σ

2
t , ϱt)

∂f ′
t

=


1 0 0

0 2σ2
t 0

0 0 1− ϱ2t

 . (B3)

The Fisher information matrix is computed as the expected value of outer product of the gradient

vector. Given the degrees of freedom ν > 3 this is computed as:

It = Et−1[∇t∇′
t] =


(1+ν)

(ν+3)(1−ϱ2t )σ2
t

0 4(1+ν)

σt(1−ϱ2t )(3+ν)

0 1
2(3+ν)σ4

t
0

4(1+ν)

σt(1−ϱ2t )(3+ν)
0 3(1+ν)

(1−ϱ2t )(3+ν)

 . (B4)
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As a result, the vector of scaled scores reads as:

st = (J ′
tdiag(It)Jt)−

1
2J ′

t∇t =


sµ,t

sγ,t

sδ,t

 =


√

(ν+3)(1−ϱ2t )
(ν+1)

wtζt√
(ν+3)
2ν

(wtζ
2
t − 1)

sgn(εt)
√

(ν+3)(1−sgn(εt)ϱt)
3(ν+1)(1+sgn(εt)ϱt)

wtζ
2
t

 . (B5)

Full derivations for the Information matrix are provided in De Polis (2023).

B.3 Bayesian estimation

The estimation procedure follows the methodology of Delle Monache et al. (2024a). We use

minnesota-type priors for the the persistence of the transitory components. Loadings on the score

components are Inverse Gamma distributed, with mean and standard deviation equal to 0.01 and

0.001 for the permanent loadings, a, and 0.025 and 0.015 for the transitory loadings, b. This

choice reflects the view that transitory parameters are slower to react to news compared to the

transitory components. Furthermore, the prior ensures that the filter is invertible (Blasques et al.,

2022), that is it reduces the possibility of overshooting the updates in the direction of the (local)

optimum, and assumes conservative views on parameters time variation. Lastly, we assume an

inverse gamma prior for η.

Posterior estimates of the parameters are obtained via simulation by means of an Adaptive

Metropolis-Hastings algorithm (Haario et al., 1999). Given that estimated parameters lie in

bounded regions of the parameter space, we augment the algorithm with a rejection step to pre-

vent numerical instability due to invalid parameter draws. The algorithm is rather efficient, and a

complete chain of 50000 draws can be obtained in less than 2 minutes. Section D in Delle Monache

et al. (2024b) provides detailed explanation of the algorithm.
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Table C1: Time variation in higher order moments

Q Q∗ N Q Q∗ N

GDP Deflator Headline PCE

Homoskedastic

Shape 637.470∗∗∗ 644.910∗∗∗ 5.690∗∗∗ 303.820∗∗∗ 307.370∗∗∗ 6.460∗∗∗

Heteroskedastic

Scale2 597.120∗∗∗ 604.090∗∗∗ 4.050∗∗∗ 566.190∗∗∗ 572.800∗∗∗ 2.330∗∗∗
Shape 154.150∗∗∗ 155.950∗∗∗ 2.780∗∗∗ 148.610∗∗∗ 150.350∗∗∗ 1.890∗∗∗

Core CPI Headline CPI

Homoskedastic

Shape 840.710∗∗∗ 850.480∗∗∗ 3.290∗∗∗ 407.600∗∗∗ 412.340∗∗∗ 4.220∗∗∗

Heteroskedastic

Scale2 556.980∗∗∗ 563.460∗∗∗ 3.810∗∗∗ 730.210∗∗∗ 738.700∗∗∗ 3.430∗∗∗
Shape 185.210∗∗∗ 187.360∗∗∗ 3.260∗∗∗ 183.040∗∗∗ 185.160∗∗∗ 2.150∗∗∗

Note: Q is the portmanteau test, Q* is the Ljung-Box extension (with automatic lag selection) and N corresponds
to the Nyblom test. Q and Q* are distributed as a χ2

1, while N is distributed as a Cramer von-Mises distribution
with 1 degree of freedom. * p < 10%, ** p < 5%, *** p < 1%.

C Evidence for other inflation measures

In this appendix we report additional results about other policy relevant measures of inflation.

The evidence reported in Section 3 is based on data for core PCE, which is the measure preferred

by the FOMC to gauge price stability. Nevertheless, estimating the model on different inflation

measures lends support to a generalization of our in-sample findings. Specifically, we consider, the

GDP deflator, headline PCE and core and headline CPI. All samples go from 1960 Q1 to 2024 Q2.

Table C1 collect the test statistics for the detection of time variation in the asymmetry for all

four measures of inflation. Overall, the null of restricted asymmetry is strongly rejected.

Figure C1 shows the estimated dynamics of inflation volatility and skewness across the different

measures, highlighting in blacks that of core PCE. Two comments are in order. First, the dynamics

of the two moments is extremely similar for all measures. With varying magnitudes, volatilities

spike around recessions, and remain persistently high soon after. Skewness follow humped-shape
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Figure C1: Risk across different inflation measures
Note: The panels report the full moment median estimates volatilities (a) and skewness (b) for different measures
of inflation. Black lines indicate estimates for core PCE. Other inflation measures we consider are: GDP deflator,
headline PCE, headline CPI and core CPI. Gray shaded areas represent NBER recessions.

patterns in the 1970s and 1980s, then moving downward since the 1990s, remaining negative until

the pandemic period. Second, it’s important to note that, among all these measures, core PCE

shows the least variation in both volatility and skewness, appearing to be the more stable measure

of price dynamics.

Based on previous results, we also report the estimates for the time-varying moments of the

four measures.
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Figure C2: Estimated mean for different inflation measures
Note: The panels report the estimated total (black) and long-run (green) mean for: (a) GDP deflator, (b) headline
PCE, (c) core CPI, and (d) headline CPI. ray shaded areas represent NBER recessions.
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Figure C3: Estimated volatility for different inflation measures
Note: The panels report the estimated total (black) and long-run (green) volatility for: (a) GDP deflator, (b)
headline PCE, (c) core CPI, and (d) headline CPI. ray shaded areas represent NBER recessions.
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Figure C4: Estimated skewness for different inflation measures
Note: The panels report the estimated total (black) and long-run (green) skewness for: (a) GDP deflator, (b)
headline PCE, (c) core CPI, and (d) headline CPI. ray shaded areas represent NBER recessions.
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D Monte Carlo analysis

We simulate T=250 observations from Sktν(µt, σt, ϱt), for simulated values of the parameters of

location, µt, scale, σt, and asymmetry, ϱt. Unless explicitly mentioned, we simulate the parameters

independently, and we consider the following cases: no asymmetry, breaks in the asymmetry, fixed

asymmetry with location-scale covariance, fixed asymmetry with location-scale covariance with

breaks, time-varying asymmetry, and time-varying asymmetry with breaks in the location-scale

covariance.

For all cases, we simulate the location and log-scale from first order Gaussian autoregressive

processes, with autoregressive parameters equal to 0.9 and 0.99, repsectively, and variances set to

0.05 and 0.025. When we assume correlated innovations for the two parameters, we set this to

0.4. When we impose breaks in this correlation, we assume the relation abruptly shifts to 0.8 after

100 observations, and then falls to -0.4 after additional 50 observations. When time-varying, the

asymmetry parameter is simulated from an AR(1) with persistence set to 0.9 and variance 0.025;

when only breaks are considered, these occur on the 100th observation, moving from 0 to 0.25,

and a sharp fall to -0.25 on the 150th observation.

Define δt = log σt, δt = arctanh ϱt, and ε ∼ N (0, 1), and let chol() define the lower-triangular

Choleski factor; here we report a summary of the six DGPs.

DGP1: no asymmetry

µt
δt

 =

0.9 0

0 0.99


µt−1

δt−1

+ chol


0.05 0

0 0.025


 εt,

γt = 0, ∀t
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DGP2: constant asymmetry with breaks

µt
δt

 =

0.9 0

0 0.99


µt−1

δt−1

+ chol


0.05 0

0 0.025


 εt,

γt =


0 t ≤ 100

0.25 100 < t ≤ 150

−0.25 t < 150

DGP3: no asymmetry and location-scale covariance

µt
δt

 =

0.9 0

0 0.99


µt−1

δt−1

+ chol


0.05 0

0 0.025


1
2
1 .4

.4 1


0.05 0

0 0.025


1
2

 εt,

γt = 0 ∀t

DGP4: no asymmetry and location-scale covariance with breaks

µt
δt

 =

0.9 0

0 0.99


µt−1

δt−1

+ chol


0.05 0

0 0.025


1
2
 1 ρt

ρt 1


0.05 0

0 0.025


1
2

 εt,

ρt =


0.4 t ≤ 100

0.8 100 < t ≤ 150

−0.4 t < 150

,

γt = 0 ∀t

65



DGP5: time-varying asymmetry


µt

δt

γt

 =


0.9 0 0

0 0.99 0

0 0 0.9



µt−1

δt−1

γt−1

+ chol



0.05 0 0

0 0.025 0

0 0 0.025


 εt

DGP5: time-varying asymmetry and correlated updates


µt

δt

γt

 =


0.9 0 0

0 0.99 0

0 0 0.9



µt−1

δt−1

γt−1

+ chol


0.05 0

0 0.025


1
2


1 ρt 0.2

ρt 1 0.3

0.2 0.3 1


0.05 0

0 0.025


1
2

 εt,

ρt =


0.4 t ≤ 100

0.8 100 < t ≤ 150

−0.4 t < 150

We report the results of this exercise in Figure D5. Specifically, for DGP1 to DGP4 we report

in blue the estimated asymmetry, with 68% and 90% credible sets represented by shades of gray,

against the simulated parameter, in red. For DGP5 and DGP6 we report the distribution of the

difference between the estimated and the simulated asymmetry.

For the first DGP, data are simulated under the assumption of symmetry, with independent,

time-varying location and volatility. We show that the model does not pick up any asymmetry when

this is not a feature of the data. The second DGP considers the case in which the asymmetry

parameter experiences a break from 0 to 0.25 after 100 observations, hence implying positively

skewed distributions, and another jump to -0.25 after additional 50 observations; this second jump

changes the sign of the skewness. Three comments are in order. First, as for DGP1, no asymmetry

is detected when the true value is zero. Second, the parameter reacts promptly to the first jump,

despite only 50 observations feature positive skewness. Third, the model quickly detects a turning

point in the sing of the asymmetry, turning from positive to negative in less than 20 periods.
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DGP3 and DGP4 are meant to provide reassurances that the model does not mistake correla-

tions between the location and the scale for evidence of asymmetry. In DGP4 we further allow for

the correlation to experience breaks, that flip the sing of the covariance between the two parame-

ters. The reported results highlight that the model provides asymmetry estimates that are robust

to such features of the data.

Finally, in DGP5 and DGP6 we simulate the asymmetry parameter to vary over time, as

the other two parameters. The two DGPs differ in the covariance structure of the parameters:

DGP5 assumes independent innovations to the processes, whereas DGP6 assumes a full covariance

matrix, with the covariance between location and scale experiencing two breaks, as in DGP4. Once

again, we document that our model is successful in detecting the correct sign and dynamics for the

asymmetry parameter, even when all the parameters are correlated, and experience instability.

Returning to DGP2, we evaluate the ability of the model to distinguish permanent changes

in the parameter against transitory moves. Figure D6 report the estimated long- and short-run

components; notice that the two distributions add up to that reported in panel (b) of Figure D5.

The model successfully discerns the persistence of the asymmetry in the data whereby it cor-

rectly picks up permanent changes. Interestingly, the short-run component shows short periods

of increased volatility around the observations where the DGP jumps. This suggests that at first

the model interprets new observations as transitory changes in the data, but as more evidence

comes through, the long-run component quickly learns the new feature of the data, whereas the

short-term component reverts to zero.
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Figure D5: Estimated asymmetry
Note: The panels reports the estimated paths for the asymmetry parameters (blue) with the associated 68% and
90% credible sets. The asymmetry under the DGP is reported in red. For DGP 5 and 6 we report deviations of the
estimated parameter from the simulated values. We consider T=250 observations for 1000 Monte Carlo replications.
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Figure D6: Disentangling permanent changes
Note: The panel report the estimates long- (a) and short- (b) components of the asymmetry parameters estimated
under DGP2. Median values are reported in blue, with the associated 68% and 90% credible sets in gray. The
asymmetry under the DGP is reported in red. We consider T=250 observations for 1000 Monte Carlo replications.
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E Additional results

Table E1: Out-of-sample comparison - Student t

h = 1 h = 2 h = 3 h = 4 h = 8

MSFE 0.839
(0.085)

0.854
(0.051)

0.908
(0.081)

0.942
(0.129)

1.008
(0.782)

CRPS 0.938
(0.074)

0.950
(0.077)

0.960
(0.081)

0.959
(0.074)

0.996
(0.331)

CRPS decomposition

Right 0.927
(0.109)

0.914
(0.075)

0.935
(0.099)

0.936
(0.074)

0.981
(0.116)

Left 0.952
(0.088)

0.982
(0.258)

0.986
(0.197)

0.983
(0.200)

1.009
(0.808)

Center 0.936
(0.058)

0.953
(0.117)

0.960
(0.041)

0.960
(0.060)

0.999
(0.476)

Note: The table report the relative performance of a t model against our Skt model. Results are reported in ratios,
with our model being at the numerator; values smaller than 1 imply superior predictive accuracy of the SKt model.
The out-of-sample period runs from 2000Q1 to 2024Q2. Values in bold are significant at the 10% level.

Table E2: Out-of-sample comparison - ϱ = 0, ∀t

h = 1 h = 2 h = 3 h = 4 h = 8

MSFE 0.832
(0.081)

0.884
(0.115)

0.906
(0.057)

0.966
(0.190)

1.055
(0.997)

CRPS 0.947
(0.116)

0.961
(0.153)

0.962
(0.075)

0.978
(0.166)

1.024
(0.983)

CRPS decomposition

Right 0.928
(0.081)

0.928
(0.053)

0.947
(0.048)

0.962
(0.123)

1.012
(0.854)

Left 0.967
(0.242)

0.995
(0.440)

0.988
(0.339)

0.998
(0.461)

1.039
(0.994)

Center 0.946
(0.123)

0.961
(0.150)

0.954
(0.053)

0.977
(0.155)

1.024
(0.970)

Note: The table report the relative performance of our Skt model when skewness is omitted (ϱt = 0, ∀t) against our
Skt model. Results are reported in ratios, with our model being at the denominator; values smaller than 1 imply
superior predictive accuracy of the SKt model. The out-of-sample period runs from 2000Q1 to 2024Q2. Values in
bold are significant at the 10% level.
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Table E3: Deep parameters estimates

Autocorrelations

ϕµ ϕγ ϕδ
0.990
(0.006)

0.853
(0.068)

0.803
(0.055)

Learning rates

aµ bµ aγ bγ aδ bδ
0.095
(0.005)

0.094
(0.005)

0.084
(0.013)

0.088
(0.011)

0.041
(0.011)

0.085
(0.013)

Degrees of freedom

η
0.130
(0.035)

Note: The table reports mean estimates of the deep parameters of the model. Parameters standard deviations are
reported in parentheses.
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Figure E1: Bai and Ng (2005) rolling tests

Note: The figure reports rolling Bai and Ng (2005) test statistics for US core PCE, using windows of 3, 5 and 10
years, and the the 68 and 90% critical values.
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